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Abstract

We present two fundamental performance evaluation methodologies for face

recognition algorithms. Our experiments include (1) the development of an eval-

uation methodology based on an identification and verification model and (2) the

investigation of design decisions for a principal component analysis (PCA) based

face recognition system. Throughout the series of experiments, we present a ro-

bust and comprehensive evaluation methodology for face recognition algorithms

that allows researchers to identify the relative strengths and weaknesses of their

algorithms and that points out the directions for future research.

Two critical performance characteristics of face recognition algorithms are

the identification and verification performance. We report performance results

based on the identification and verification model for various face recognition

algorithms. We identify the state of the art by direct quantitative assessment

of different approaches. The results that we report are for images taken (1) on

the same day, (2) on different days, (3) at least one year apart, and (4) under

different lighting conditions.

PCA-based algorithms form the basis of numerous algorithms in the face

recognition literature. PCA is a statistical technique and its incorporation into

a face recognition system requires numerous design decisions. We explicitly

state the design decisions by implementation of a generic modular PCA-based

face recognition system. We make a comprehensive analysis of the different

implementations for each module, as these affect the variations in performance.
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Chapter 1

Introduction

1.1 Research Overview

Over the last decade, recognition of the human face from still and video

images has been emerging as an active area of research [2, 45, 118]. For most

humans, face recognition is not a difficult problem. However, the performance of

computerized face recognition systems is another story, due to the large number

of variations in facial appearance [9, 13, 42, 65] and the similarities of different

faces. Therefore, face recognition presents a significant challenge and is one of

the fundamental problems in computer vision and pattern recognition.

In addition to its importance to fundamental research, face recognition has

numerous applications for surveillance, security, telecommunications, digital

libraries, and human-computer interactions (for a survey of face recognition re-

search, see Chellappa et al [22] and Samal et al [100]). A number of face recog-

nition applications are being implemented in such areas as the control of access

to restricted facilities or equipment, the credentialing of individuals for back-

ground and security checks, the monitoring of airports or border crossings, and

the finding and logging of multiple appearances of individuals in surveillance

videos. Other possible applications are for verifying identity at automatic teller

1



Ch.1 Introduction 2

machines (ATMs) and matching photo identification records for fraud detection,

including credit cards, passports, and driver’s licenses.

Computer algorithms can serve as models for the human face recognition

function [4, 6, 31, 58, 78, 110]. By directly comparing these models (algorithms)

with human performance, one can assess which models are biologically plau-

sible [51, 83, 114]. The closer the concordance between human and model

performance, the greater the plausibility. However, the models need not be

comprehensive; i.e., account for all aspects of face recognition. Rather, one can

ascertain which properties of the human face processing system can be correctly

modeled. So far, many face recognition systems have been implemented based

on either the principal component analysis (PCA) approach (also known as the

eigenfaces) or the dynamic link architecture (DLA) [61]. PCA encodes second or-

der statistics of the face and can be enhanced using spatiotemporal constraints

encoded as manifold trajectories that correspond to the views obtained as the

face rotates in three-dimensional space. In DLA, elastic graph matching is at-

tempted between locally derived forensic landmark grids, possibly encoded using

Gabor wavelets [32, 123].

Solutions for the face recognition problem involve the segmentation of faces

from cluttered scenes [68, 99, 107, 125] and the extraction of the features from

the face [70, 73, 79, 82, 127] and their classification [10, 26, 60, 108]. The

variability of applications poses a wide range of technical challenges at each

stage of the recognition process. The accuracy of a face recognition algorithm

is strongly affected by the limitations placed on the problem by image quality,

cluttered backgrounds, lighting conditions, head rotations and scalings, facial

expressions, and variations in appearance and partial occlusions. Therefore,

the solutions for the face recognition problem have been synergetic efforts from

fields such as signal processing [39, 91], pattern recognition [20, 36], machine

learning [69, 74, 94, 101], neural networks [48, 53, 101], evolutionary com-

putation [112, 117], neurosciences [58], and psychophysics studies of human
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perception [12, 15, 16, 18, 55, 105, 126].

A new topic in face recognition is the interaction between predictive learning

and performance evaluation. One has to develop both to assess performance

on given data sets and to make predictions about future performance on un-

seen data sets. Statistical learning theory provides the means to estimate the

guaranteed risk for testing on future facial imagery. This risk is formulated in

terms of the empirical risk calculated during training and the complexity of the

classification model underlying the face recognition system. Thus, performance

depends on both the complexity of the classifier and the relative size and quality

of the training versus test data sets. Also, one clearly has to develop standard

databases and an evaluation methodology to assess and compare competing

face recognition systems. Decision theory and receiver operating characteristic

(ROC) provide the tools needed to quantify the level of performance displayed by

specific face recognition systems.

1.2 Motivations for Research

There are two main categories of research to advance the state of the art

in face recognition. The first category is the development of algorithms that

can provide reliable solutions to face recognition problems. In algorithm de-

velopment, a number of techniques have been proposed for preprocessing and

enhancement [55, 56], detection of face and facial components in a scene [28,

29, 30, 43, 98, 107, 124], feature extraction algorithms [3, 26, 126], and classifi-

cation techniques [67, 70, 92]. Not one of these procedures should be neglected,

since each component is critical and performs as a part of the face recognition

system.

The second category is the development of an evaluation methodology based

on different scenarios and categories of images, or computational psychophysics

studies using human performance. Recently, empirical evaluation techniques
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have emerged as a serious research field in pattern recognition and computer

vision. An empirical evaluation is defined as the development of a methodology

for measuring the ability of algorithms to meet requirements for system level

implementation. (See Table 1.1 for a list of papers that use empirical evaluation

techniques for computer vision and pattern recognition.)

There are three fundamental approaches or categories in evaluation work.

As with any classification, there is a risk that the categories will not necessarily

be clean divisions. Evaluation work could belong to more than one category

or not neatly fit into any category. However, the categorization provides insights

that are useful for the development of an empirical evaluation of computer vision

algorithms.

The first category is the problem of obtaining ground truth data where none

are evident. Thus, a major component of the evaluation process is to develop a

method of obtaining the ground truth data. The classic example of this problem

is the development of evaluation methods for edge detectors. The question of

what should be marked as an edge in a real image is often problematic. In this

case, the human perception of an edge quality may be used, as it uses properties

of an edge that are different from those needed for machine vision tasks.

The second category is the evaluation of a set of classifications by one group.

The group wanting to do the evaluation will often not be able to get access to

original implementations of all the algorithms of interest. Therefore, they have

to implement some of the algorithms based on information in the literature. This

introduces the possibility that the version of the algorithm evaluated will not

be identical to the original developer’s algorithm. However, implementation and

evaluation of a set of algorithms by one group can at least establish performance

for a baseline algorithm. Comparing an algorithm against such a baseline allows

for an initial assessment.

The third category is the independent administration of evaluations. In an
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Table 1.1: Empirical evaluation works for computer vision and pattern recogni-

tion research.

Authors Applications Description

�reference�

Blue et al Fingerprint matching Pattern classifiers

[11] OCR applications

Cho et al Edge detection Bootstrap,

[23] perturbation strategy

Demigny and Kamle Edge detection, Canny criteria,

[33] edge operators localization criterion

Heath et al Edge detector, Low-level processing,

[49] variance analysis human rating

Hong and Jain Fingerprint matching, Decision fusion,

[52] face recognition eigenface, minutiae

Jain and Zongker Feature selection, Genetic algorithm,

[54] SAR image classification node pruning, texture models

Lindenbaum Object recognition, Localization, noise models,

[62] pose estimation similarity measures

Lopez et al Ridge detection, Comparative analysis,

[64] valley detection drainage patterns

Moon et al Face recognition Principal component analysis,

[71, 72] nearest neighbor classifier

Randen and Husoy Texture classification Filtering approaches

[92]

Shufelt Monocular building extraction Comparative analysis,

[102] feature delineation

Shufelt Object recognition, Vanishing points,

[103] building detection photogrammetry

Zhao et al Linear discriminant analysis Classifiers

[129]
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independent evaluation, one group collects a set of images, designs an evalu-

ation protocol, provides images to the testees, and evaluates the results. This

method is most desirable, since all algorithms are tested on the same assump-

tions, images, and scoring method. Independent evaluation by a noncompetitor

gives a greater sense of impartiality to the results. In this method, the key point

of the success is that the evaluation mechanism needs to be evolved and refined

over time. Our research is based on this category, since this method provides a

high degree of standardization and allows direct comparison between competing

approaches. Additionally, independent evaluation helps to assess the state of

the art and point out directions for future research.

In this dissertation, we present two major performance evaluation method-

ology for face recognition algorithms. Our research is focused on implementation

and investigation of algorithm development as well as development of an eval-

uation methodology for face recognition. We did a number of experiments that

included (1) the development of an evaluation protocol based on an identifica-

tion and verification model and (2) the implementation of a principal component

analysis (PCA) based face recognition system and the investigation of design de-

cisions. The primary objectives of our research included the establishment of a

standardized evaluation methodology for face recognition, the assessment of the

state of the art in face recognition, and the presentation of a design methodology

to identify future areas of research.

Two critical performance characteristics of face recognition algorithms are

the identification and verification performance. In most face recognition litera-

ture, a large number of algorithms have reported outstanding recognition results

(usually better than 95% correct identification) on relatively small databases

(usually fewer than 50 individuals). To date, direct comparison was impossible

between competing algorithms since the results were reported using different

assumptions, databases, and evaluation methods. We reported performance

results for various face recognition algorithms by developing a new evaluation
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Table 1.2: PCA works for face recognition research.

Authors [reference] Technique Database

Abdi, Valentine, Edelman, Linear neural networks 320 images of

and O’Toole [1, 113, 114] radial basis function Japanese, Caucasian

Belhumeur, Hespanha, Fisher’s linear discriminant, Harvard Robotics Lab.

and Kriegman [8] illumination invariance 330 images of 5 people

Craw, Costen, Shape-free PCA, 387 images of 27 people

and Kato [27] caricaturing 14 images per person

Etemad and Discriminant eigenfeatures, FERET database (DB)

Chellappa [35, 128] evidential reasoning 2000 images

Georghiades, Kriegman, Illumination cone, Harvard Robotics Lab.

and Belhumeur [38] generalized bas-relief transform 660 images of 10 people

Hancock, Burton, Shape-free PCA, Aberdeen frame face DB

and Bruce [46, 47] graph matching system 186 images of 50 people

Kirby and Karhunen-Loeve expansion, 100 images (in the ensemble)

Sirovich [59, 106] symmetric eigenfunctions 200 (extended ensemble)

Liu and Probabilistic reasoning models, FERET database

Wechsler [63] Bayes classifier, MAP classifier 1107 images of 369 people

Moghaddam and Density estimation, MIT Media Lab.

Pentland [69] maximum likelyhood 7562 mug shots of 3000 people

Penev and Atick [79] Local feature analysis FERET database

Pentland, Moghaddam, View-based method, MIT Media Lab.

and Starner [81] parametric method 7562 mug shots of 3000 people

Swets and Discriminant analysis, Weizmann Institute Face DB

Weng [109] feature selection 1614 images of 802 classes

Turk and PCA (eigenface) MIT Media Lab.

Pentland [111] 2500 images of 16 people

Wilder, Phillips, Gray-scale projection, 1212 Infrared images of

Jiang, and Wiener [121] matching pursuit filter 101 people (without glasses)
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methodology based on the identification and verification model. We identified

the state of the art by direct quantitative assessment of different approaches.

The results were reported for images taken on the same day, on different days,

at least one year apart, and under different lighting conditions.

PCA-based algorithms form the basis for numerous algorithms and studies

in the face recognition research. (See Table 1.2 for a list of papers that have used

PCA-based techniques for face recognition.) PCA is a statistical technique and

its incorporation into a face recognition system requires numerous design deci-

sions. We explicitly state the design decisions by introducing a generic modular

PCA-based face recognition system.

We performed two main experiments and report the results using identifi-

cation and verification performance based on the standard set of facial images.

In the first experiment, we presented comprehensive analysis of different imple-

mentations for each module that affect variations in performance. We explored

the variations of the algorithm performance by changing the illumination nor-

malization procedure, studying the effects of image compression using Joint

Photographic Experts Group (JPEG) [80] and wavelet [116] techniques, varying

the number of eigenvectors in the representation, and changing the distance

measure in the classification process. In the second experiment, we examined

variations in algorithm performance by computing algorithm performance on

100 randomly generated image sets of the same size.

Throughout the series of experiments, we present a robust and compre-

hensive evaluation methodology for face recognition algorithms. Our evaluation

methodology allows researchers to identify the algorithms’ relative strengths and

weaknesses by direct quantitative assessment of different approaches and our

evaluation points out the directions for future research.
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Figure 1.1: Identification scenario for face recognition.

1.3 Face Recognition Scenarios

A general face recognition task can be defined as identification or verifica-

tion of one or more persons from still or video images. In most face recognition

literature, the results have been reported to a single identification performance

measure for a database of images; i.e., on database X, algorithm A correctly

identifies faces n percent of the time (or more generally, a single probability of

identification curve for database X). This implies that the identification per-

formance on a single database is predictive of verification performance. In an

identification application, an algorithm is presented with a face that it must

identify. Meanwhile, in a verification application, an algorithm is presented with

a face and a claimed identity, and the algorithm must accept or reject the claim.

Since identification and verification are different problems, they need separate

evaluation techniques.
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Figure 1.2: Verification scenario for face recognition.

In an identification scenario, the input is an image of an unknown individual

(a probe) that is presented to a face recognition algorithm. The algorithm reports

the closest matches from a collection of images of known individuals (a gallery)

(see Figure 1.1). The performance of the algorithm is measured by its ability

to correctly identify the person in the probe image. For example, an unknown

facial image from a surveillance video would be a probe, and the face recogni-

tion system would display the images of the 100 people from the gallery in the

database that most resembled the unknown individual. A possible application

for this scenario would be to search electronic mug shots for the identity of a

suspect.

In a verification scenario, the input is a face with a claimed identity. The face

recognition algorithm either accepts or rejects the claimed identity based on the

similarity score s�i� j� and threshold value c (see Figure 1.2). In this case, the im-
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Figure 1.3: Schematic diagram for face recognition evaluation process.

portant system performance measures are the probabilities of false alarms and

missed recognitions. A false alarm occurs when the algorithm reports that the

person in a probe image is in the gallery when that person is not in the gallery.

A missed recognition is when the algorithm reports that the person in the probe

is not in the gallery when that person is in the gallery, or the algorithm identi-

fies that person as the wrong person. The applications for this scenario include

use with an automatic teller machine (ATM), the verification of identities for a

passport or driver’s license, or the control of access to buildings and computers.

In the access control applications [60], when an individual walks up to a door-

way, his or her image is captured, analyzed, and compared with the gallery of

individuals approved for access. Alternatively, the system could monitor points

of entry into a building or an airport, and search for terrorists or other criminals

attempting to enter surreptitiously.
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 Frontal vs Frontal

 Frontal vs Rotated

 Effects of database size: 100, 200, ..., 1000 people

Figure 1.4: Examples of evaluation issues for face recognition.

1.4 Evaluation Issues for Face Recognition

We presented a schematic diagram of a general evaluation procedure for face

recognition algorithms (see Figure 1.3). For each probe, the algorithm calculates

the similarity score s�i� j� for the gallery presented to the face recognition sys-

tem. The similarity scores are sorted and ranked in proper order to generate

performance results.

For the successful implementation of face recognition algorithms, it is cru-

cial that the algorithm performance for intended applications can be estimated

or predicted from known performance results. These predictions are used in

making decisions in designing a demonstration system. To be able to make

predictions, the performance evaluations for identification and verification sce-
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narios and the characterization of performance in terms of the variability of the

images in the database and the database size are necessary.

One of the key issues in face recognition evaluation is how does the size

of the database affect performance (see Figure 1.4 for examples of evaluation

issues for face recognition). The effect of database size is important because

algorithms are usually developed and initially evaluated on databases that are

smaller than the databases encountered in applications. To be able to make

an intelligent choice of which algorithms are appropriate for an application, one

would like to be able to predict performance on larger databases. We investigate

the effects of database size and composition on identification and verification

performance. Further questions can be raised about the age, gender [1, 14, 17,

21, 76, 77, 122], and race [75] distribution of the database.

1.5 Outline of the Dissertation

This dissertation is organized as follows. Chapter 2, The Face Recognition

Technology (FERET) Program, is an overview of the FERET program. We describe

the FERET program and give details of the FERET testing history, database, and

the evaluation procedure.

Chapter 3, Performance Evaluation Methodology for Face Recognition Al-

gorithms, presents research goals and the originality and contributions of the

research, followed by a discussion of decision theory and design principles. We

give a more detailed description of the major differences between the efforts for

the old FERET test (performed in August 1994 and March 1995) and the new

FERET test (performed in September 1996 and March 1997) based on our new

evaluation methodology.

Chapter 4, An Identification Model for Face Recognition Algorithms, focuses

on the identification model and reports the identification results for the perfor-

mance of partially and fully automatic algorithms. A more detailed analysis and
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discussion are given based on the variation in identification performance.

Chapter 5, A Verification Model for Face Recognition Algorithms, focuses on

the verification model and reports the verification results on the performance of

partially and fully automatic algorithms. A more detailed analysis and discus-

sion are given based on the variation in verification performance.

Chapter 6, Analysis of PCA-Based Face Recognition Algorithms, describes a

design methodology based on the key principles identified in chapters 4 and 5.

The system was implemented with a modular design concept that uses nor-

malization of images, feature selection by PCA representations of images, and

a recognition process based on nearest-neighbor classifiers [39]. We explored

a comprehensive analysis of the system components that includes the normal-

ization, feature extraction, and classification. Fundamental problems that are

specific to the recognition of human faces are addressed, and some solutions

are proposed.

Chapter 7, Conclusions, summarizes the performance evaluation methodol-

ogy, addresses the originality and contributions of research, and identifies areas

for further face recognition research.

In the Appendix, we define terms used in these chapters and present math-

ematical representations of the fundamental techniques for our PCA-based face

recognition system including histogram equalization, generation of the eigen-

face, and nearest-neighbor classifier.



Chapter 2

The Face Recognition

Technology (FERET) Program

2.1 Overview of the FERET Program

Two critical requirements are necessary to support a reliable face recogni-

tion system. These include the collection of a large database of facial images and

a standardized testing procedure. The FERET1 program was designed to address

both requirements through the collection of a large database of facial images

and an independently administered testing procedure [85, 86, 87, 88, 93]. The

FERET program has focused on three major tasks, which include (1) the collec-

tion of a large database of facial images and testing, (2) the development of a

performance evaluation methodology for face recognition algorithms, and (3) the

investigation of the technology base for a face recognition system.

In this dissertation, the main focus of our research includes the development

of a new evaluation methodology for face recognition algorithms and the assess-

1The FERET program is sponsored by the Department of Defense Counterdrug Technology

Development Program through the Defense Advanced Research Projects Agency (DARPA), with

the U.S. Army Research Laboratory (ARL) serving as technical agent.

15
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ment of the technology by implementation and investigation of a PCA-based face

recognition system.

2.2 The FERET Testing History

To date, two major FERET tests have been conducted, which include (1) a

test of the initial development phase of face recognition algorithms in August

1994 and March 1995 (which we will collectively call the old test), and (2) a

test based on a new evaluation methodology for the face recognition algorithms

evaluated in September 1996 and March 1997 (which we will collectively call

the new test). The goals of these efforts were to measure overall progress in

face recognition to assess the state of the art in face recognition, determine the

maturity of face recognition algorithms from leading researchers, and develop an

independently administered standardized evaluation method for face recognition

algorithms.

The August 1994 test established an initial performance baseline for face

recognition algorithms that could automatically locate, normalize, and identify

faces from a database. The participants for the August 1994 test were the Mas-

sachusetts Institute of Technology (MIT), Rutgers University, the University of

Illinois, the University of Southern California (USC), and The Analytic Science

Company (TASC).

The March 1995 FERET test measured progress since August 1994 and

evaluated the performance of algorithms on larger galleries. One emphasis of

the March 1995 test was on probe sets that contained duplicate images. A set

of images is referred to as a duplicate set if the person in the set is in a pre-

viously collected set (see Figure 2.1). The March 1995 test was significantly

more difficult, since the number of duplicates increased from 60 to 463. For

the March 1995 test, the participants were MIT, USC, and the Laboratory of

Computational Neuroscience at Rockefeller University. When the performances
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Figure 2.1: Examples of variations between collections (duplicate images).

of the August 1994 and March 1995 FERET tests were directly compared, ab-

solute performance did not drop despite the increased difficulty of the March

1995 test. These results showed that the March 1995 test performance was an

improvement over the August 1994 test (for details of these tests results and the

FERET database, see Phillips et al [86, 88] and Rauss et al [93]).

To be able to characterize the performance of the two portions of the old test

and open up the testing procedure to more algorithms, we devised two new test

versions; the September 1996 and March 1997 tests (see Table 2.1 for details of

the new test). We report the results for 12 algorithms for the new test, including

10 partially automatic algorithms and 2 fully automatic algorithms. Two of these

algorithms were developed at the MIT Media Laboratory. The first was the same

algorithm that was tested in March 1995. This algorithm was retested so that

improvements made to it since March 1995 could be measured. The second

algorithm was based on more recent work [66, 69]. Algorithms were also tested

from Excalibur Corp. (Carlsbad, CA), Michigan State University (MSU) [109,

130], Rutgers University [119], the University of Southern California (USC) [123],

and the University of Maryland (UMD) [35, 128, 130]. The algorithm from UMD

was first tested in September 1996 and a modified version was tested in March

1997. For the fully automatic version of the test, algorithms from MIT and USC

were evaluated.

The final two algorithms were our implementation of a normalized correla-

tion and a principal components analysis (PCA) based algorithm [71, 111]. These
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Table 2.1: List of algorithms that took the September 1996 test, broken out by

versions taken and dates administered. (Note: MIT tested two algorithms.)

Test Date

September March

Version of test Algorithms 1996 1997 Baseline

Partially Baseline PCA [71, 111] �
automatic Baseline Correlation �

Excalibur Corp. �
(Eye MIT Media Lab ����
coordinates MSU [109, 130] �
given) Rutgers Univ. [119] �

UMD [35, 128, 130] � �
USC �

Fully MIT Media Lab [66, 69] �
automatic USC [123] �

algorithms provide a performance baseline. In our implementation of the PCA-

based algorithm, all images were (1) translated, rotated, and scaled so that the

center of the eyes were placed on specific pixels; (2) faces were masked to remove

background and hair; and (3) the nonmasked facial pixels were processed by a

histogram equalization algorithm. The training set contained 500 faces from the

development set of the FERET database. Faces were represented by their pro-

jection onto the first 200 eigenvectors and were identified by a nearest-neighbor

classifier using the L� metric. For normalized correlation, the images were (1)

translated, rotated, and scaled so that the center of the eyes were placed on

specific pixels and (2) faces were masked to remove background and hair.
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2.3 The FERET Database

The FERET database was established on the assumption that the evaluation

of face recognition algorithms requires a common database of images for both

development and testing. For the evaluation procedure to produce meaning-

ful results, the images in the developmental database must resemble those on

which algorithms are to be tested. The development and testing data sets must

be similar in both quality and quantity. For example, if the test will consist of

images of 1000 individuals, it is not appropriate for the development database

to consist of 50 individuals. The algorithms tested will be only as good as the

database from which they are developed. The FERET database has fulfilled the

data requirements for both development and testing and has become the de facto

standard for face recognition from still images [84, 88].

Before the existence of the FERET database, most research efforts addressed

the results that came from the use of small databases that were developed un-

der highly controlled conditions. Since the FERET database was developed to

address a real-world problem, it was created to be more realistic, although still

providing a semicontrolled environment over the type and nature of the images

collected. The FERET database consists of two parts. The development portion

is given to researchers while the sequestered portion is not released but is used

to test the researchers’ face recognition algorithms. The images in the develop-

ment set are representative of the sequestered images. The sequestered images

allow face recognition algorithms to be evaluated on images that they have not

been exposed to before.

For the FERET database, the facial images were produced with a 35-mm

camera with Kodak’s color ultra film. These images were processed onto a CD-

ROM by Kodak’s multiresolution digital image technique. The facial images were

created by retrieving the color images from the CD-ROM and converting them

into 8-bit gray scale and tagged-image file format (TIFF) images. The dimensions
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pr hr qr fa ql hl pl

re rd rc fb

Figure 2.2: Typical set of images of one individual collected in one sitting.

of these images are 256 pixels wide and 384 pixels high. Each image was given

a unique file name that encodes the image ground truth data. The fields include

(1) the subject’s identity, affixed to a five digit number; (2) the pose of the image,

identified by two characters; (3) the date that the image was taken, given in a

six-digit format; and (4) special variations flags. A fixed identity number was

given for any one person so that any future images of that person would have

the same identity number.

The facial images were collected in 15 different sessions between August

1993 and July 1996. To maintain a degree of consistency throughout the

database, the same physical setup and location were used in each photogra-

phy session. However, there were variations from session to session since the

equipment had to be reassembled for each session. Images of an individual were

acquired with the person in different poses and placed in sets of 5 to 11 images

under relatively unconstrained conditions (see Figure 2.2). Some images of peo-

ple in the database span nearly a year between the first sitting and the most

recent one (see Figure 2.3).
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Figure 2.3: Examples of different categories of probes with number of images

used. The duplicate I image was taken within one year of the fa image and the

duplicate II and fa images were taken at least one year apart.

Images were taken at two frontal views (fa and fb), with a different facial

expression requested for the second frontal view. For 200 sets of images, a

third frontal view was used with a different camera and different lighting (this is

referred to as the fc image). The remaining images were collected at six different

aspects: right and left profile (pr, pl), right and left quarter profile (qr, ql), and

right and left half profile (hr, hl). Additionally, images at five irregularly spaced

extra locations (ra, rb, rc, rd, and re) were collected for some individuals. Some

individuals were asked to put on their glasses or add some simple but significant

variation to the images.

For the August 1994 test, the gallery consisted of 317 individuals among 673

sets of images with 5,000 total images from the FERET database. This required

numerous collection activities and a large-scale effort to catalogue the images

into a database. This database has been released to at least 50 different research

groups for the development and performance evaluation of their algorithms. For

the March 1995 test, the gallery consisted of 831 individuals among 1,109 sets

of images with 8,525 total images.

By July 1996, 1,564 sets of images were in the database, for 14,126 total im-

ages. To support the September 1996 and March 1997 tests, an additional 456
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sets of images were collected for the FERET database. Currently, the database

contains files of 1,199 individuals and 365 duplicate sets of images. For some

people, over two years elapsed between their first and most recent sittings, with

some subjects being photographed multiple times. There were 91 duplicate sets

where the time between the first and last sittings was at least 18 months. The

development portion of the database, which consists of 503 images, was released

to researchers. The remaining images were sequestered for testing by the federal

government.

2.4 The FERET Testing Procedure

The FERET testing procedure was designed to establish a standardized eval-

uation methodology for face recognition algorithms. The FERET test measured

performance of the face recognition algorithms, but was not concerned with the

speed of the implementation, real-time implementation issues, and any speed

and accuracy trade-offs. These issues need to be addressed in a fielded system

and they were beyond the scope of the FERET test.

In figure 2.4, we present a schematic diagram of the FERET test proce-

dure. The FERET test was administered at each research group’s site under

the supervision of a government representative. The processing time or number

of workstations used are not taken into account because execution times can

vary according to the machines used, network configuration, and the amount

of time that the developers spent optimizing their code. These factors should

be considered for the development of face recognition algorithms that could be

incorporated into fieldable systems.

The images in the gallery and probe sets were selected from both the devel-

opmental and sequestered portions of the FERET database. Only images from

the FERET database were included in the test. However, algorithm developers

were not prohibited from using images outside the FERET database to develop or
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Figure 2.4: Schematic diagram of the FERET testing procedure.

tune parameters in their algorithms. To ensure that the matching was not done

by file name with ground truth information, we generated random file names

for the images given to the researchers for testing. The nominal pose of each

face was provided to the researchers. The results of the test were recorded on

8-mm computer data tape. Finally, each test was processed by scoring code in

government facilities and the results were presented based on each test category

based on different scoring code.

For the old FERET test, three major tests were conducted based on three

different gallery and probe sets. The first test is the large gallery test, which

measured the ability of the algorithms to handle large databases. The differences

between a probe image and a gallery image of a person include changes in time,

scale, illumination, and pose. The first test examined the ability of algorithms to

recognize faces from a gallery of 316 individuals. The second was the false-alarm

test, which measured how well an algorithm rejects faces not in the gallery. The

goal of the false-alarm tests is to see if an algorithm can successfully differentiate

between probes that are in the gallery and those not in the gallery. The third test
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developed a baseline for effects of pose changes on the algorithm’s performance.

A small set of rotation tests have been investigated to provide a baseline for pose

variation. For each test, different gallery and probe sets have been created.

As part of the FERET program, our major focus was on the development of a

new evaluation methodology that could overcome the limitations of the old test

procedure. The primary objectives of our research based on a new evaluation

methodology include (1) the development of a standardized evaluation methodol-

ogy for face recognition, (2) the measurement of the progress in face recognition

since the September 1994 and March 1995 tests, (3) the identification of state of

the art by direct assessment of the competing face recognition algorithms, and

(4) the identification of directions for future face recognition research.



Chapter 3

Performance Evaluation

Methodology for Face

Recognition Algorithms

3.1 Research Goals

The main goals of our research are (1) the development of a flexible and

robust evaluation methodology for face recognition algorithms and (2) the as-

sessment of the technology base by implementation and investigation of a PCA-

based face recognition system. The availability of the FERET program database

and testing procedure has made a significant difference and has served as a

basis for our research and development of a face recognition system.

Our evaluation methodology provides a comprehensive picture of the state

of the art in face recognition technology. This picture was created by the flex-

ibility of our new evaluation methodology for different scenarios, categories of

images, and versions of algorithms. The performance of face recognition algo-

rithms could be further investigated without having a new set of tests for both

25
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identification and verification scenarios. Also, we investigated a number of de-

sign decisions for a PCA-based face recognition system. These design decisions

point out critical requirements for a fieldable face recognition system.

3.2 Originality and Contributions

The originality and contributions of our research were addressed through-

out the series of experiments and in our comprehensive evaluation methodol-

ogy. Before the FERET test, there was no method to evaluate or compare the

competing face recognition algorithms. Various researchers collected their own

databases images (often of fewer than 50 individuals) under conditions relevant

to the aspects of the problems that they were examining. The independently

administered FERET testing is based on a standard database and evaluation

method. Thus, researchers could investigate the strengths and weaknesses of

their algorithm by direct assessment with other competing algorithms.

Since our evaluation methodology is developed based on the same assump-

tions, database, and evaluation method, it is possible for researchers to report

results by direct comparison among competing algorithms. More importantly,

we clarify the state of the art in face recognition and identify general directions

for future research. Our evaluation methodology allows the face recognition

community to assess overall strengths and weaknesses in the field. The evalua-

tion methodology allows comparison not only on the basis of the performance of

an individual algorithm, but also on the aggregate performance of all algorithms

tested. Through this type of assessment, the research community learns in an

unbiased and open manner of the important technical problems to be addressed

and the progress that is being made toward solving them.

We have presented a new evaluation methodology based on an identifica-

tion and verification model (see Figure 3.1 for the comparisons of the features

between the old and new FERET tests). Our evaluation methodology was de-
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Figure 3.1: Comparisons of the features between old FERET test and new test

based on our new evaluation procedure.

signed with flexibility to measure algorithm performance for both identification

and verification tasks. The FERET database and testing procedure make it pos-

sible to independently evaluate face recognition algorithms. Because our new

evaluation protocol has the ability to test an algorithm’s performance on differ-

ent tasks for multiple galleries and probe sets, it became the de facto standard

for measuring the performance of face recognition algorithms. The results and

analysis of the identification and verification performance scores are presented

in Chapters 4 and 5. Also, we have implemented a PCA-based face recognition

system and investigated a number of design decisions that show variations of

different approaches. The comprehensive analysis of the results for the design

decisions are presented in Chapter 6. These results address the critical factors

that affect the performance of face recognition systems.
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3.3 Decision Theory

There are many situations in which we have to make decisions based on

observations or data that are random variables. As a random phenomenon, the

combinations of signals and noise must be described statistically and analyzed

in the framework of the theory of probability. The theory behind the solutions

for these situations is known as decision theory or hypothesis testing. In com-

munication or radar technology, decision theory or hypothesis testing is known

as (signal) detection theory [50]. We present fundamental concepts of the condi-

tional probability, binary decision theory, and various decision tests.

3.3.1 Conditional Probability

A. Definition

The conditional probability of an event A given event B, denoted by P �AjB�,

is defined as

P �AjB� �
P �A �B�

P �B�
P �B� � � (3.1)

where P �A �B� is the joint probability of A and B. Similarly,

P �BjA� � P �A �B�

P �A�
P �A� � � (3.2)

is the conditional probability of an event B given event A. From Equations 3.1

and 3.2, we have

P �A �B� � P �AjB�P �B� � P �BjA�P �A� (3.3)

Equation 3.3 is often quite useful in computing the joint probability of events.
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B. Bayes’ Rule

From Equation 3.3, we can obtain the following Bayes’ rule:

P �AjB� �
P �BjA�P �A�

P �B�
(3.4)

3.3.2 Hypothesis Testing

A. Definitions

A statistical hypothesis is an assumption about the probability law of ran-

dom variables. Suppose we observe a random sample �X�� ���� Xn� of a random

variable X whose probability density function (PDF) f�x� �� � f�x�� ���� xn� �� de-

pends on a parameter �. We wish to test the assumption � � �� against the

assumption � � ��. The assumption � � �� is denoted by H� and is called the null

hypothesis. The assumption � � �� is denoted by H� and is called the alternative

hypothesis.

H� � � � �� : (null hypothesis),

H� � � � �� : (alternative hypothesis).

A hypothesis is called simple if all parameters are exactly specified. Other-

wise, it is called composite. Thus, suppose H� � � � �� and H� � � �� ��; then H� is

simple and H� is composite.

B. Hypothesis Testing and Types of Errors

Hypothesis testing is a decision process that establishes the validity of a

hypothesis. We can think of the decision process as dividing the observation

space Rn (Euclidean n-space) into two regions, R� and R�. Let x � �x�� ���� xn� be

the observed vector. Then if x � R�, we will decide on H�; if x � R�, we decide
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on H�. The region R� is known as the acceptance region, R� is known as the

rejection (or critical) region, since the null hypothesis is rejected. Thus, with the

observation vector (or data), one of the following four actions can happen:

1. H� true; accept H�.

2. H� true; reject H� (or accept H�).

3. H� true; accept H�.

4. H� true; reject H� (or accept H�).

The first and third actions correspond to correct decisions, and the second and

fourth actions correspond to errors. The errors are classified as

1. Type I error: Reject H� (or accept H�) when H� is true.

2. Type II error: Reject H� (or accept H�) when H� is true.

Let PI and PII denote, respectively, the probabilities of Type I and Type II errors:

PI � P �D�jH�� � P �x � R��H�� (3.5)

PII � P �D�jH�� � P �x � R��H�� (3.6)

where Di�i � �� �� denotes the event that the decision is made to accept Hi. PI is

often denoted by � and is known as the level of significance, and PII is denoted

by �, and �� � �� is known as the power of the test. Note that since � and �

represent probabilities of events from the same decision problem, they are not

independent of each other or of the sample size n. It would be desirable to have

a decision process such that both � and � will be small. However, in general,

a decrease in one type of error leads to an increase in the other type for a fixed

sample size. The only way to simultaneously reduce both types of errors is to
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increase the sample size. One might also attach some relative importance (or

cost) to the four possible courses of action and minimize the total cost of the

decision. The probabilities of correct decisions may be expressed as

P �D�jH�� � P �x � R��H�� (3.7)

P �D�jH�� � P �x � R��H�� (3.8)

As an example, the two hypothesis for radar signal detection can be defined

as

H�: no target exists,

H�: target is present.

In this case, the probability of a Type I error PI � P �D�jH�� is often referred

to as the false alarm probability (denoted by PF ), the probability of a Type II

error PII � P �D�jH�� as the miss probability (denoted by PM ), and P �D�jH�� as

the detection probability (denoted by PD). The cost of failing to detect a target

cannot be easily determined. In general, we set a value of PF that is acceptable

and seek a decision test that constraint PF to this value while minimizing PD (or

equivalently minimizing PM ). This is known as the Neyman-Pearson test [34].

3.3.3 Decision Tests

A. Maximum-Likelihood Test

Let x be the observation vector and P �xjHi�� i � �� �, denote the probability of

observing x given that Hi was true. In the maximum-likelihood test, the decision

regions R� and R� are selected as
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R� � fx � P �xjH�� � P �xjH��g (3.9)

R� � fx � P �xjH�� � P �xjH��g (3.10)

Thus, the maximum-likelihood test can be expressed as

d�x� �

���
��

H�� if P �xjH�� � P �xjH��

H�� if P �xjH�� � P �xjH��
(3.11)

The above decision test can be rewritten as

P �xjH��

P �xjH��

H�

�
H�

� (3.12)

If we define the likelihood ratio 	�x� as

	�x� �
P �xjH��

P �xjH��
(3.13)

the maximum-likelihood test can be expressed as

	�x�
H�

�
H�

� (3.14)

which is called the likelihood ratio test, and 1 is called the threshold value of the

test. Note that the likelihood ratio 	�x� is also often expressed as

	�x� �
f�xjH��

f�xjH��
(3.15)
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B. MAP Test

Let P �Hijx�� i � �� �, denote the probability that Hi was true given a partic-

ular value of x. The conditional probability P �Hijx� is called an a posteriori (or

posterior) probability; that is, a probability that is computed after an observa-

tion has been made. The probability P �Hi�� i � �� �, is called an a priori (or prior)

probability. In the maximum a posteriori (MAP) test, the decision regions R� and

R� are selected as

R� � fx � P �H�jx� � P �H�jx�g (3.16)

R� � fx � P �H�jx� � P �H�jx�g (3.17)

Thus, the MAP test is given by

d�x� �

���
��

H�� if P �H�jx� � P �H�jx�
H�� if P �H�jx� � P �H�jx�

(3.18)

which can be rewritten as

P �H�jx�
P �H�jx�

H�

�
H�

� (3.19)

Using Bayes’ rule (Equation 3.4), Equation 3.19 reduces to

P �xjH��P �H��

P �xjH��P �H��

H�

�
H�

� (3.20)

Using the likelihood ratio 	�x� defined in Equation 3.13, the MAP test can be

expressed in the following likelihood ratio test as

	�x�
H�

�
H�


 �
P �H��

P �H��
(3.21)
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where 
 � P �H���P �H�� is the threshold value for the MAP test. Note that when

P �H�� � P �H��, the maximum-likelihood test is also the MAP test.

C. Neyman-Pearson Test

As we mentioned before, it is not possible to simultaneously minimize both

��� PI� and ��� PII�. The Neyman-Pearson test provides a workable solution

to this problem in that the test minimizes � for a given level of �. Hence, the

Neyman-Pearson test maximizes the power of the test � � � for a given level of

significance �. In the Neyman-Pearson test, the critical (or rejection) region R�

is selected such that � � � � � � P �D�jH�� � P �D�jH�� is maximum, subject to

the constraint � � P �D�jH�� � ��. This is a classical problem in optimization:

maximizing a function subject to a constraint, which can be solved by the use of

the Lagrange multiplier method. Thus, we construct the objective function

J � ��� ��� 	��� ��� (3.22)

where 	 � � is a Lagrange multiplier. Then the critical region R� is chosen to

maximize J . It can be shown that the Neyman-Pearson test can be expressed in

terms of the likelihood ratio test as

	�x�
H�

�
H�


 � 	 (3.23)

where the threshold value 
 of the test is equal to the Lagrange multiplier 	,

which is chosen to satisfy the constraint � � ��.

D. Bayes’ Test

Let Cij be the cost associated with �Di�Hj�, which denotes the event that we

accept Hi when Hj is true. Then, the average cost, which is known as Bayes’

risk, can be written as
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C � C��P �D��H�� � C��P �D��H�� � C��P �D��H�� � C��P �D��H�� (3.24)

where P �Di�Hj� denotes the probability that we accept Hi when Hj is true. By

Bayes’ rule (Equation 3.4), we have


C � C��P �D�jH��P �H�� � C��P �D�jH��P �H��

� C��P �D�jH��P �H�� � C��P �D�jH��P �H�� (3.25)

In general, we assume that C�� � C�� and C�� � C��, since it is reasonable to

assume that the cost of making an incorrect decision is greater than the cost of

making a correct decision. The test that minimizes the average cost 
C is called

the Bayes’ test, and it can be expressed in terms of the likelihood ratio test as

	�x�
H�

�
H�


 �
�C�� � C���P �H��

�C�� � C���P �H��
(3.26)

Note that when C�� � C�� � C�� � C��, the Bayes’ test (Equation 3.26) and the

MAP test (Equation 3.21) are identical.

E. Minimum Probability of Error Test

If we set C�� � C�� � � and C�� � C�� � � in Equation 3.24, we have


C � P �D��H�� � P �D��H�� � Pe (3.27)

which is just the probability of making an incorrect decision. Thus, in this

case, the Bayes’ test yields the minimum probability of error, and Equation 3.26

becomes

	�x�
H�

�
H�


 �
P �H��

P �H��
(3.28)
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We see that the minimum probability of the error test is the same as the MAP

test.

F. Minimax Test

We have seen that the Bayes’ test requires the a priori probabilities P �H��

and P �H��. Frequently, these probabilities are not known. In such circum-

stance, the Bayes’ test cannot be applied, and the following minimax (min-max)

test may be used. In the minimax test, we use the Bayes’ test that corresponds

to the least favorable P �H��. In the minimax test, the critical region R�
� is defined

by

max
P �H��


C�P �H��� R
�
� � min

R�

max
P �H��


C�P �H��� R� � max
P �H��


C�P �H��� R� (3.29)

for all R� �� R�
�. In other words, R�

� is the critical region that yields the minimum

Bayes’ risk for the least favorable P �H��. Assuming that the minimization and

maximization operations are interchangeable, we have

min
R�

max
P �H��


C�P �H��� R� � max
P �H��

min
R�


C�P �H��� R� (3.30)

The minimization of 
C�P �H��� R� with respect to R� is simply the Bayes’ test, so

that

min
R�


C�P �H��� R� � 
C��P �H�� (3.31)

where C��P �H�� is the minimum Bayes’ risk associated with the a priori prob-

ability P �H��. Thus, Equation 3.30 states that we may find the minimax test

by finding the Bayes’ test for the least favorable P �H��; that is, the P �H�� that

maximizes 
C�P �H��.
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3.4 Design Principles

The traditional method of testing a face recognition algorithm is to provide

the algorithm with two sets of images � the gallery and the probe set � that do

not intersect [87]. Unfortunately, this method severely limits one’s ability to an-

alyze the data. To overcome this deficiency, we modified the evaluation protocol

to allow for a more detailed analysis of face recognition algorithm performance.

We designed the evaluation protocol so that algorithm performance could be

computed for a variety of different galleries and probe sets.

In the new protocol, an algorithm is given two sets of images: the target set

and the query set. We introduce this terminology to distinguish these sets from

the gallery and probe sets that are used in computing performance statistics.

The target set is given to the algorithm as the set of known facial images. The

images in the query set are the unknown facial images to be identified. The

FERET test had two fundamental design rules. The first was that there is only

one image per person in the gallery. The second was that the representation

used to encode the faces is learned from a subset of images in the gallery. These

design rules test recognition methods that do not explicitly use class informa-

tion.

3.4.1 Test Sets, Galleries, and Probe Sets

For each image qi in the query set Q, an algorithm reports the similarity

si�k� between qi and each image tk in the target set T . The evaluation protocol

is designed so that each algorithm can use a different similarity measure. We

do not compare similarity measures from different algorithms. The key property

of the new protocol, which allows for greater flexibility in scoring, is that for any

two images si and tk, we know si�k�. (In fact, designation of which set is the

target and which is the query is arbitrary. By reformatting the output, we can

change the roles of the target and query sets.)
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This flexibility allows the evaluation methodology to be robust and compre-

hensive and is achieved by computing scores for virtual galleries and probe sets.

A gallery G is a virtual gallery if G is a proper subset of the target set; i.e., G � T .

Similarly, P is a virtual probe set if P � Q. For a given gallery G and probe set P,

the performance scores are computed by examination of the similarity measures

si�k�, such that qi � P and tk � G.

The virtual gallery and probe set technique allows us to characterize algo-

rithm performance by different categories of images. The different categories

include (1) rotated images, (2) duplicates taken within a week of the gallery

image, (3) duplicates where the time between the images is at least one year,

(4) galleries containing one image per person, and (5) galleries containing more

than one image per person. We can create a gallery of 100 people and estimate

the algorithm’s performance at recognizing people in this gallery. Using this as a

starting point, we can then create virtual galleries of 100, 200, � � � , 1000 people

and determine how performance changes as the size of the gallery increases.

Another avenue of investigation is to create n different galleries of size 100, and

calculate the variation in algorithm performance with the different galleries of

this size.

To take full advantage of virtual galleries and probe sets, we placed multiple

images of the same person in the target and query sets. If such images were

marked as the same person, then the algorithms being tested could use the

information in the evaluation process. To keep this from happening, we required

that each image in the target set be treated as a unique face. In practice, this

condition is enforced by giving every image in the target and query set a unique

identification.

For each query image qi, an algorithm output the similarity measure si�k�

for all images tk in the target set. The output for each query image qi was sorted

by the similarity scores si���. Since the target set is a subset of the query set, the

test output contained the similarity score between all images in the target set.
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Table 3.1: Size of galleries and probe sets for different probe categories.

Probe category Duplicate I Duplicate II FB fc

Gallery size 1196 864 1196 1196

Probe set size 722 234 1195 194

Except for the rotated and digitally modified images, the target and query sets

were the same. Thus, the test output contained every target image matched with

itself. To obtain a robust comparison of algorithms, it was necessary to calculate

performance on a large number of galleries and probe sets. This allowed a

detailed analysis of performance on multiple galleries and probe sets. (We did

not present the results for the rotated or digitally modified images.)

To allow for a robust and detailed analysis, we report identification and

verification scores for four categories of probes. The first probe category was

the FB probes. For each set of images, there were two frontal images. One of

the images was randomly placed in the gallery, and the other image was placed

in the FB probe set. (This category is denoted by FB to differentiate it from

the fb images in the FERET database.) The second probe category contained

all duplicate frontal images in the FERET database for the gallery images. We

refer to this category as the duplicate I probes. The third category was the fc

(images taken the same day, but with a different camera and lighting). The

fourth consisted of duplicates where there was at least one year between the

acquisition of the probe image and corresponding gallery image. We refer to this

category as the duplicate II probes. For this category, the gallery images were

acquired before January 1995 and the probe images were acquired after January

1996. The size of the galleries and probe sets for the four probe categories are

presented in Table 3.1. The FB, fc, and duplicate I galleries are the same. The

duplicate II gallery is a subset of the other galleries. None of the individuals

photographed for the gallery images wore glasses.
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3.4.2 Performance Evaluation

Generally, face recognition algorithms consist of two main parts: (1) face

detection [68, 69, 99, 107, 125] and normalization and (2) face identification

and verification. Algorithms that consist of both parts are referred to as fully

automatic algorithms, and those that consist of only the second part are partially

automatic algorithms. The first version of the test dealt with partially automatic

algorithms, and the test algorithms were given a list of images in the target and

query sets, and the coordinates of the center of the eyes for images in the target

and query sets. In the second version of the test, the coordinates of the eyes

were not provided. (For details of the test, refer to Table 2.1.)

By comparing the performance between the two versions, one can estimate

the performance of the face-locating and identifying portions of an algorithm.

Both tasks are evaluated on the same sets of images. The target and query sets

were the same for each version. The target set contained 3,323 images and the

query set 3,816 images. All the images in the target set were frontal images. The

query set consisted of all the images in the target set plus rotated images and

digitally modified images. We designed the digitally modified images to test the

effects of illumination and scale [87].

The basic models for evaluating the performance of an algorithm are the

closed and open universes. In the closed universe, every probe is in the gallery,

and in an open universe, some probes are not in the gallery. Both models re-

flect different and important aspects of face recognition algorithms and report

different performance statistics. We report identification results using a closed

universe model.

In an identification problem, the input to an algorithm is an unknown face,

and the algorithm reports back the estimated identity of an unknown face from

a database of known individuals. In the closed universe, every probe is in the

gallery. The complement to the closed universe is the open universe where some
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Figure 3.2: Example of identification performance.

probes are not in the gallery. The open universe model is used in a verification

scenario where the input is a face with a claimed identity. In a verification

problem, the algorithm either accepts or rejects the claimed identity [95, 96].

The closed universe model allows one to ask how good is an algorithm at

identifying a probe image. The question is not always, “Is the top match cor-

rect?”, but “Is the correct answer in the top n matches?” This lets one know

how many images have to be examined to get the desired level of performance.

For identification, the performance statistics are reported as cumulative match

scores (see Figure 3.2). The rank is plotted along the horizontal axis, and the

vertical axis is the probability of identification. The probability of identification

can be calculated for any subset of the probe set. We calculated this score to
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Figure 3.3: Example of verification performance.

evaluate an algorithm’s performance on different categories of probes; i.e., ro-

tated or scaled probes.

In an open universe test, the results are reported on a receiver operating

characteristic (ROC) curve. ROC curves are being used to judge the discrimina-

tion ability of various statistical methods that combine various clues and test

results for predictive purposes. In our experimental results, ROC presents the

trade-off between the probability of false alarm and the probability of correct

identification (see Figure 3.3). There are two classes of probes in an open uni-

verse. The first is made up of probes that are not in the gallery, which could

generate false alarms. A false alarm occurs when an algorithm reports that one

of these probes is in the gallery. The false-alarm rate is PF � bF�F �, where F � is
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the number of probes not in the gallery and bF is the number of probes reported

as false alarms. The second class is made up of probes that are in the gallery.

Performance on these probes is characterized by PI , the probability that a probe

is correctly identified; thus, PI � bI�I�, where I� is the size of a set of probes and

bI is the number of these probes that are correctly identified.

For a given algorithm, the choice of a suitable hit and false-alarm rate pair

depends on a particular application. However, for performance evaluation and

comparison among algorithms, the equal error rate (EER) is often quoted. The

EER occurs at the threshold c, where the incorrect rejection and false-alarm

rates are equal (incorrect rejection rate = 1 � verification rate).



Chapter 4

An Identification Model for Face

Recognition Algorithms

4.1 Introduction

Over the last decade, face recognition has become an active area of research

in computer vision, neuroscience, and psychology. Progress has advanced to

the point that face recognition systems are being demonstrated in real-world

settings [86]. The rapid development of face recognition is due to a combination

of factors: active development of algorithms, the availability of a large database

of facial images, and a method for evaluating the performance of face recognition

algorithms. The FERET database and evaluation methodology address the latter

two points and are de facto standards. There have been three FERET evaluations

with the most recent being the September 1996 and March 1997 FERET test.

We report identification results using a closed universe model. The closed

universe model allows one to ask how good an algorithm is at identifying a probe

image. This lets one know how many images have to be examined to get the

desired level of performance. In an identification problem, the input to an algo-

rithm is an unknown face, and the algorithm reports back the estimated identity

44
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of an unknown face from a database of known individuals (e.g., searching an

electronic file of mug shots for the identity of a suspect).

4.2 Identification Model

Our new evaluation protocol was designed to assess and advance the state

of the art and point out directions for future research. To succeed at this, the

test design must solve the three bears problem; the test cannot be too hard or

too easy, but has to be just right. If the test is too easy, the testing process

becomes an exercise in tuning existing algorithms. If the test is too hard, the

test is beyond the ability of existing algorithmic techniques. If the results from

the test are poor, they do not allow for an accurate assessment of algorithmic

capabilities.

The solution to the three bears problem is through the selection of images

in the test set and the evaluation protocol. Tests are administered using an

evaluation protocol that states the mechanics of the tests and the manner in

which the tests will be scored. In face recognition, for example, the protocol

states the number of images of each person in the test, how the output from the

algorithm is recorded, and how the performance results are reported.

The characteristics and quality of the images are major factors in determin-

ing the difficulty of the problem being evaluated. For example, if the faces are

in a predetermined position in the images, the problem is different from that

for images in which the faces can be located anywhere in the image. In the

FERET database, variability was introduced by the inclusion of images taken at

different dates and locations. This resulted in changes in lighting, scale, and

background.

The evaluation protocol is based on a set of design principles. Stating the

design principle allows one to assess how appropriate the FERET test is for a

particular face recognition algorithm. Also, the design principles help in de-
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termining if an evaluation methodology for testing algorithm(s) for a particular

application is appropriate. Before discussing the design principles, we state the

evaluation protocol.

The second design principle is that training is completed before the start of

the test. This forces each algorithm to have a general representation for faces,

not a representation tuned to a specific gallery. Without this condition, virtual

galleries would not be possible.

For algorithms to have a general representation for faces, they must be

gallery (class) insensitive. Examples are algorithms based on normalized cor-

relation or PCA. An algorithm is class sensitive if the representation is tuned to

a specific gallery. Examples are straightforward implementation of Fisher dis-

criminant analysis [35, 109]. The Fisher discriminant analysis technique was

adapted to class insensitive testing methodologies by Zhao et al [128, 130], with

performance results of these extensions being reported in this chapter.

The third design rule is that all algorithms tested compute a similarity mea-

sure between two facial images; this similarity measure was computed for all

pairs of images in the test set. Knowing the similarity score between all pairs

of images from the target and query sets allows for the construction of virtual

galleries and probe sets.

The computation of an identification score is quite simple. Let P be a probe

set and jPj the size of P. We score probe set P against gallery G, where G =

fg�� ���� gMg and P= fp�� ���� pNg by comparing the similarity scores si��� such that

pi � P and gk � G. For each probe image pi � P, we sort si��� for all gallery images

gk � G. We assume that a smaller similarity score implies a closer match. If gk

and pi are the same image, then si�k� � �. The function id�i� gives the index of

the gallery image of the person in probe pi; i.e., pi is an image of the person in

gid�i�. A probe pi is correctly identified if si�id�i�� is the smallest score for gk � G.

A probe pi is in the top k if si�id�i�� is one of the k-th smallest scores si��� for
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gallery G. Let Rk denote the number of probes in the top k. We reported Rk�jPj,
the fraction of probes in the top k. As an example, let k � �, R� � �� and jPj =

100. Based on the formula, the performance score for R� is 80/100 = 0.8.

In reporting identification performance results, we state the size of the gallery

and the number of probes scored. The size of the gallery is the number of dif-

ferent faces (people) in the images that are in the gallery. For all results, there

is one image per person in the gallery. Thus, the size of the gallery is also the

number of images in the gallery. The number of probes scored (also, size of the

probe set) is jPj. The probe set may contain more than one image of a person

and the probe set may not contain an image of everyone in the gallery. Every

image in a probe is an image of a person in the corresponding gallery.

4.3 Identification Results

4.3.1 Partially Automatic Algorithm Performance

We report identification scores for four categories of probes (see section 3.4.1).

The results for identification are reported as cumulative match scores. Table 4.1

shows the categories corresponding to the figures that present the results, type

of results, and size of the gallery and probe sets. Figures 4.1 to 4.4 report the

identification performance of four categories of probes; FB, duplicate I, fc, and

duplicate II.

In Figures 4.5 and 4.6, we compare the difficulty of different probe sets.

Whereas, Figures 4.1 to 4.4 report the identification performance for each algo-

rithm, Figure 4.5 shows a single curve that is an average of the identification

performance of all algorithms for each probe category. For example, the first

rank score for duplicate I probe sets is computed from an average of the first

rank score for all algorithms in Figure 4.2. In Figure 4.6, we present the current

upper bound identification performance on partially automatic algorithms for
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Table 4.1: Figures reporting identification results for partially automatic algo-

rithms. Performance is broken out by probe category.

Figure No. Probe category Gallery size Probe set size

4.1 FB 1,196 1,195

4.2 Duplicate I 1,196 722

4.3 fc 1,196 194

4.4 Duplicate II 864 234

each probe category. For each category of probe, Figure 4.6 plots the algorithm

with the highest top rank score (R�).

4.3.2 Fully Automatic Algorithm Performance

We report identification performance for the fully automatic algorithms of

the MIT Media Lab and USC. To allow for a comparison between the partially

and fully automatic algorithms, we plot the results for the partially and fully

automatic algorithms in one graph. Figure 4.7 shows identification performance

for FB probes and Figure 4.8 shows identification performance for duplicate I

probes. Additionally, Figure 4.9 shows identification performance for fc probes

and Figure 4.10 shows identification performance for duplicate II probes. (The

gallery and probe sets are the same as in subsection 4.3.1.)

4.3.3 Variation in Identification Performance

From a statistical point of view, a face recognition algorithm estimates the

identity of a face. Consistent with this view, we can ask about the variance in

performance of an algorithm: For a given category of images, how does perfor-

mance change if the algorithm is given a different gallery and probe set? In

Tables 4.2 and 4.3, we show how algorithm performance varies if the people in
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Figure 4.1: Identification performance for FB probes. Partially automatic algo-

rithms tested in (a) September 1996 and (b) March 1997.
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Figure 4.2: Identification performance for duplicate I probes. Partially automatic

algorithms tested in (a) September 1996 and (b) March 1997.
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Figure 4.3: Identification performance for fc probes. Partially automatic algo-

rithms tested in (a) September 1996 and (b) March 1997.
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Figure 4.4: Identification performance for duplicate II probes. Partially auto-

matic algorithms tested in (a) September 1996 and (b) March 1997.
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Figure 4.5: Average identification performance of partially automatic algorithms

for each probe category.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

P
r
o
b
a
b
i
l
i
t
y
 
o
f
 
i
d
e
n
t
i
f
i
c
a
t
i
o
n

Rank

FB probes
fc probes

Duplicate I probes
Duplicate II probes

Figure 4.6: Current upper bound on identification performance of partially au-

tomatic algorithm for each probe category.
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Figure 4.7: Identification performance of fully automatic algorithms against par-

tially automatic algorithms for FB probes.
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Figure 4.8: Identification performance of fully automatic algorithms against par-

tially automatic algorithms for duplicate I probes.
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Figure 4.9: Identification performance of fully automatic algorithms against par-

tially automatic algorithms for fc probes.
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Figure 4.10: Identification performance of fully automatic algorithms against

partially automatic algorithms for duplicate II probes.
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the galleries change. For this experiment, we constructed six galleries of ap-

proximately 200 individuals, in which an individual was in only one gallery (the

number of people in each gallery versus the number of probes scored is given in

Tables 4.2 and 4.3). Results are for the partially automatic algorithms.

We have ordered algorithms by their top rank performance on each gallery;

for example, in Table 4.2, the UMD March 1997 algorithm scored highest on

gallery 1 and the baseline PCA and correlation tied for ninth place. Also in-

cluded in the table is the average identification performance for all algorithms.

Table 4.2 reports results for the FB probes. Table 4.3 is organized in the same

manner as Table 4.2, except that duplicate I probes are scored. Tables 4.2

and 4.3 report results for the same gallery. The galleries were constructed by

placing images in the galleries in the chronological order that the images were

collected (the first gallery contains the first images collected and the sixth gallery

contains the most recent images that were collected). In Table 4.3, mean age

refers to the average time between the collection of images in the gallery and the

corresponding duplicate probes. No scores are reported in Table 4.3 for gallery

6 because there are no duplicates for this gallery.

4.4 Discussions and Conclusions

Our new evaluation protocol makes it possible to independently evaluate

algorithms. The protocol was designed to evaluate algorithms on different gal-

leries and probe sets for different scenarios. In this chapter, we discuss how

we computed the performance on identification tasks using this protocol. Our

results show that factors that affect performance include scenario, date tested,

and probe category.

The September 1996 and March 1997 test was the latest FERET test (the

others were the August 1994 and March 1995 test [88]). One of the main goals

of the FERET tests has been to improve the performance of face recognition
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Table 4.2: Variations in identification performance on six different galleries on

FB probes. Images in each gallery do not overlap. Ranks range from 1 to 10.

Rank by top match

Gallery size / scored probes

200/200 200/200 200/200 200/200 200/199 196/196

Algorithms Gallery 1 Gallery 2 Gallery 3 Gallery 4 Gallery 5 Gallery 6

Baseline PCA 9 10 8 8 10 8

Baseline Cor. 9 9 9 6 9 10

Excalibur Corp. 6 7 7 5 7 6

MIT Sep96 4 2 1 1 3 3

MIT Mar95 7 5 4 4 5 7

MSU 3 4 5 8 4 4

Rutgers 7 8 9 6 7 9

UMD Sep96 4 6 6 10 5 5

UMD Mar97 1 1 3 2 2 1

USC 2 3 2 2 1 1

Average score 0.935 0.857 0.904 0.918 0.843 0.804

algorithms, and this can be seen in the new FERET test. The first improvement

in performance was with the MIT Media Lab September 1996 algorithm over the

March 1995 algorithm; the second is the improvement that came with the UMD

algorithm between September 1996 and March 1997.

By looking at the improvements in the algorithms over the series of FERET

tests, one sees that substantial progress has been made in face recognition. The

most direct method is to compare the performance of fully automatic algorithms

on fb probes (the two earlier FERET tests only evaluated fully automatic algo-
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Table 4.3: Variations in identification performance on five different galleries on

duplicate probes. Images in each gallery do not overlap. Ranks range from 1 to

10.

Rank by top match

Gallery size / scored probes

200/143 200/64 200/194 200/277 200/44

Mean age of probes (months) 9.87 3.56 5.40 10.70 3.45

Algorithms Gallery 1 Gallery 2 Gallery 3 Gallery 4 Gallery 5

Baseline PCA 6 10 5 5 9

Baseline Cor. 10 7 6 6 8

Excalibur Corp. 3 5 4 4 3

MIT Sep96 2 1 2 2 3

MIT Mar95 7 4 7 8 10

MSU 9 6 8 10 6

Rutgers 5 7 10 7 6

UMD Sep96 7 9 9 9 3

UMD Mar97 4 2 3 3 1

USC 1 3 1 1 1

Average score 0.238 0.620 0.645 0.523 0.687

rithms. The best top rank score for fb probes on the August 1994 test was 78%

on a gallery of 317 individuals, and for March 1995, the top score was 93% on

a gallery of 831 individuals [88]. This compares to 87% in September 1996 and

95% in March 1997 (on a gallery of 1,196 individuals).

On duplicate I probes, MIT Media Lab improved from 39% (March 1995) to
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51% (September 1996); USC’s performance remained approximately the same at

about 58% between March 1995 and March 1997. This improvement in perfor-

mance was achieved while the gallery size increased and the number of duplicate

I probes increased from 463 to 722. While increasing the number of probes does

not necessarily increase the difficulty of identification tasks, we argue that the

September 1996 duplicate I probe set was more difficult to process then the

March 1995 set. The September 1996 duplicate I probe set contained the du-

plicate II probes, and the March 1995 duplicate I probe set did not contain a

similar class of probes. Overall, the duplicate II probe set was the most difficult

probe set.

Another goal of the FERET tests is to identify areas of strength and weakness

in the field of face recognition. We addressed this issue by computing algorithm

performance for multiple galleries and probe sets. From this evaluation, we con-

cluded that algorithm performance is dependent on the gallery and probe sets.

We observed variation in performance due to changing the gallery and probe set

within a probe category, and by changing probe categories. The effect of chang-

ing the gallery while keeping the probe category constant is shown in Tables 4.2

and 4.3. For fb probes, the performance range is 80% to 94%; for duplicate I

probes, the range is 24% to 69%. Equally important, Tables 4.2 and 4.3 show

the variability in relative performance levels. For example, in Table 4.3, the UMD

September 1996 duplicate performance varies between number three and nine.

Similar results were found by Moon and Phillips [71] in their study of PCA-based

face recognition algorithms. This shows that an area of future research could be

to measure the effect of changing the gallery and probe sets and to statistically

measure the characteristics of these variations.

Figures 4.5 and 4.6 show probe categories characterized by difficulty. These

figures show that fb probes are the easiest to identify and duplicate II probes

are the most difficult to identify. On average, duplicate I probes are easier to

identify than fc probes. However, the best performance on fc probes is sig-
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nificantly better than the best performance on duplicate I and II probes. This

comparative analysis shows that future areas of research could address the pro-

cessing of duplicate II probes and develop methods to compensate for changes

in illumination.

The scenario being tested also contributes to the algorithm performance.

For identification, the MIT Media Lab algorithm was clearly the best algorithm

tested in September 1996. However, for verification, no algorithm was a top per-

former for all probe categories (see Rizvi et al [97]). Also, for the algorithms

tested in March 1997, the USC algorithm performed better overall than the

UMD algorithm for identification; however, for verification, UMD performed bet-

ter overall [97]. This shows that performance on one task is not predictive of

performance one another task.

The new FERET test shows that definite progress is being made in face

recognition and that the upper bound in performance has not been reached.

The improvement in performance documented in this chapter directly shows

that the FERET series of tests have made a significant contribution to face recog-

nition. This conclusion is indirectly supported by (1) the improvement in perfor-

mance between the algorithms tested in September 1996 and March 1997, (2)

the number of papers that use FERET images and report experimental results

using FERET images, and (3) the number of groups that participated in the new

FERET test.



Chapter 5

A Verification Model for Face

Recognition Algorithms

5.1 Introduction

The verification of a person’s identity is a potential area for applications of

face recognition systems. In verification applications, a system confirms the

claimed identity of a face presented to it. Proposed applications for verification

systems include controlling access to buildings and computer terminals, con-

firming identities at automatic teller machines (ATMs), and verifying passport

identities at immigration ports of entry. These applications have the potential to

influence and impact our daily life.

For systems to be successfully fielded, it is critical that their performance

is identified. To date, the performance of most algorithms has only been re-

ported on identification tasks, which implies that characterization on identifi-

cation tasks holds for verification. For face recognition systems to successfully

meet the demands of verification applications, it is necessary to develop testing

and scoring procedures that specifically address these applications.

61
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A scoring procedure is one of two parts of an evaluation protocol. In the

first part, an algorithm is executed on a test set of images and the output from

executing the algorithm is written to a file(s). This produces the raw results.

In the second part, a scoring procedure processes raw results and produces

performance statistics. If the evaluation protocol and its associated scoring pro-

cedure are properly designed, the performance statistics can be computed for

both identification and verification scenarios.

Our new performance evaluation methodology is designed for face recog-

nition algorithms [84, 85]; it used images from the FERET database of facial

images [88]. The new FERET test is the latest in a series of FERET tests to

measure the progress, assess the state of the art, identify strengths and weak-

nesses of individual algorithms, and point out future directions of research in

face recognition. Prior analysis of the FERET results has concentrated on iden-

tification scenarios. In this chapter, we present (1) a verification model for the

new FERET test, and (2) results for verification performance scores.

5.2 Verification Model

In our verification model, a person in image p claims to be the person in

image g. The system either accepts or rejects the claim. (If p and g are images

of the same person, then we write p 	 g, otherwise, p �	 g.) Performance of

the system is characterized by two performance statistics [104]. The first is

the probability of accepting a correct identity; formally, the probability of the

algorithm reporting p 	 g when p 	 g is correct. This is referred to as the

verification probability, denoted by PV (also referred to as the hit rate in the

signal detection literature). The second is the probability of incorrectly verifying

a claim; formally, the probability of the algorithm reporting p 	 g when p �	 g.

This is called the false-alarm rate and is denoted by PF .

Verifying the identity of a single person is equivalent to a detection problem
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where the gallery G � fgg. The detection problem consists of finding the probes

in p � P such that p 	 g.

For a given gallery image gi and probe pk, the decision of whether an identity

was confirmed or denied was generated from si�k�. The decisions were made

by a Neyman-Pearson observer. A Neyman-Pearson observer confirms a claim

if si�k� 
 c and rejects it if si�k� � c. By the Neyman-Pearson theorem [44],

this decision rule maximized the verification rate for a given false-alarm rate

�. Changing c generated a new PV and PF . By varying c from its minimum

to maximum value, we obtained all combinations of PV and PF . A plot of all

combinations of PV and PF is an ROC (also known as the relative operating

characteristic) [34, 44]. The input to the scoring algorithm was si�k�; threshold-

ing similarity scores and computing PV , PF , and the ROCs were performed by

the scoring algorithm.

The above method computed an ROC for an individual. However, we need

performance over a population of people. To calculate an ROC over a population,

we performed a round robin evaluation procedure for a gallery G. The gallery

contained one image per person.

The first step generated a set of partitions of the probe set. For a given

gi � G, the probe set P is divided into two disjoint sets Di and Fi. The set Di

consisted of all probes p such that p 	 gi, and Fi consisted of all probes such

that p �	 gi.

The second step computed the verification and false-alarm rates for each

gallery image gi for a given cut-off value c, denoted by P c�i
V and P c�i

F , respectively.

The verification rate was computed by

P c�i
V �

���
��

�� if jDij � �

jsi�k��c given pk�Dij
jDij

otherwise�

where jsi�k� 
 c, given p � Dij was the number of probes in Di such that si�k� 
 c.
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The false-alarm rate is computed by

P c�i
F �

���
��

�� if jFij � �

jsi�k��c, given pk�Fij
jFij

otherwise�

The third step computed the overall verification and false-alarm rates. This

was a weighted average of P c�i
V and P c�i

F . The overall verification and false-alarm

rates are denoted by P c
V and P c

F , and were computed by

P c
V �

�

jGj
jGjX
i��

jDij
�
jGj

P
i jDij

P c�i
V �

�P
i jDij

jGjX
i��

jsi�k� 
 c, given pk � Dij � P c�i
V

and

P c
F �

�

jGj
jGjX
i��

jFij
�
jGj

P
i jFij

P c�i
F �

�P
i jFij

jGjX
i��

jsi�k� 
 c, given pk � Fij � P c�i
F �

The verification ROC was computed by varying c from �� to ��.

The equal error rate (EER) occurs at the threshold c where the incorrect

rejection and false-alarm rates are equal; that is, ��P c
V � P c

F . In the verification

scenario, the lower EER value means better performance results.

In reporting verification scores, we state the size of the gallery G, which was

the number of images in the gallery set G and the number of images in the

probe set P . All galleries contained one image per person, and probe sets could

contain more than one image per person. Probe sets did not necessarily contain

an image of everyone in the associated gallery. For each probe p, there existed a

gallery image g such that p 	 g.

5.3 Verification Results

5.3.1 Partially Automatic Algorithm Performance

We report verification scores for four categories of probes (see section 3.4.1).

The verification results are reported on ROCs. Table 5.1 shows the categories
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Table 5.1: Figures reporting verification results for partially automatic algo-

rithms. Performance is broken out by probe category.

Figure No. Probe category Gallery size Probe set size

5.1 FB 1196 1195

5.2 Duplicate I 1196 722

5.3 fc 1196 194

5.4 Duplicate II 864 234

corresponding to the figures presenting the results, type of results, and size of

the gallery and probe sets. Figures 5.1 to 5.4 report the verification performance

of four categories of probes: FB, duplicate I, fc, and duplicate II.

For each probe category, there are two ROCs. The first ROC reports results

for the two baseline algorithms and the algorithms tested in September 1996.

The second ROC reports results for the two baseline algorithms, the algorithms

tested in March 1997, and the UMD algorithm tested in September 1996. For

the upper bounds, we reported the algorithm with a minimum EER in Table 5.2.

We also report the average and best EER for each probe category in Figures 5.5

and 5.6.

The verification performance of algorithms from a particular group will im-

prove and the performance levels of face recognition algorithms in general will

improve over time. Thus, one should not compare test results from different test

dates. This is illustrated by the improvement in the performance of the UMD

algorithm between September 1996 and March 1997. In consideration of this

fact, we present results for September 1996 and March 1997 on different ROCs.

In Figure 5.5, we compare the difficulty of different probe sets. Whereas,

Figures 5.1 to 5.4 report the verification performance for each algorithm, Fig-

ure 5.5 shows a single curve that is an average of the verification performance
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Table 5.2: Equal error rates (EER) by probe category.

EER by probe category (%)

Algorithms FB duplicate I fc duplicate II

Baseline PCA 7 19 15 22

Baseline correlation 4 21 23 27

Excalibur 5 16 14 24

MIT Mar95 5 20 25 26

MIT Sep96 4 20 26 26

MSU 3 23 11 31

Rutgers 6 18 17 21

UMD Sep96 7 22 16 23

UMD Mar97 1 12 8 14

USC 2 14 6 17

Average 4 19 16 23

Minimum 1 12 6 14

of all the algorithms. The average ROC is computed by averaging the PV val-

ues for each PF . The average performance provides an overall measure of the

state of the art. For applications, one is interested in the currently achievable

upper bound performance. In Figure 5.6, we present the current upper bound

performance for each probe category in Figure 5.5.

5.3.2 Fully Automatic Algorithm Performance

In this subsection, we report on the verification performance for the fully

automatic algorithms of the MIT Media Lab and USC. To allow for a comparison

between the partially and fully automatic algorithms, we plot the results for

the partially and fully automatic algorithms. Figure 5.7 shows the verification
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Figure 5.1: Verification performance for FB probes. Partially automatic algo-

rithms tested in (a) September 1996 and (b) March 1997.
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Figure 5.2: Verification performance for duplicate I probes. Partially automatic

algorithms tested in (a) September 1996 and (b) March 1997.
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Figure 5.3: Verification performance for fc probes. Partially automatic algo-

rithms tested in (a) September 1996 and (b) March 1997.
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Figure 5.4: Verification performance for duplicate II probes. Partially automatic

algorithms tested in (a) September 1996 and (b) March 1997.
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Figure 5.5: Average verification performance of partially automatic algorithms

for each probe category.
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Figure 5.6: Current upper bound on verification performance of partially auto-

matic algorithms for each probe category.
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Figure 5.7: Verification performance of fully automatic algorithms against par-

tially automatic algorithms for FB probes.

performance for FB probes and Figure 5.8 shows the verification performance for

duplicate I probes. Additionally, Figure 5.9 shows the verification performance

for fc probes and Figure 5.10 shows the verification performance for duplicate

II probes.

5.4 Discussions and Conclusions

We have devised a verification scoring procedure for the new FERET test and

reported results for this procedure. This allows for an independent assessment

of face recognition algorithms in a key potential application.

This FERET test shows improvement in performance for both face recogni-

tion as a field and for individual algorithms. The improvement in the field is

exhibited by the overall increase in performance of the algorithms tested be-

tween September 1996 and March 1997. An individual increase in performance
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Figure 5.8: Verification performance of fully automatic algorithms against par-

tially automatic algorithms for duplicate I probes.
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Figure 5.9: Verification performance of fully automatic algorithms against par-

tially automatic algorithms for fc probes.
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Figure 5.10: Verification performance of fully automatic algorithms against par-

tially automatic algorithms for duplicate II probes.

is demonstrated by the improvement of the UMD algorithm. This increase shows

that algorithms’ performance should only be directly compared if they are tested

at the same time. The September 1996 MIT algorithm was the top performer

for the algorithms tested in September 1996. Among the algorithms tested in

September 1996, no algorithm was among the top performers for all probe cate-

gories. This shows that relative performance on one task may not be predictive

of relative performance on another task.

We broke out the performance for four categories of probes. Each category

represents a different degree of difficulty. To estimate the degree of difficulty for

each category, we compared the average and current upper bounds of perfor-

mance for each category. For average performance, our results rank FB probes

as easiest, duplicate II probes as most difficult, and fc and duplicate I probes

as tied in the middle. For current upper bounds, duplicate I probes are more

difficult than fc probes. Our results also show that we can expect that the best
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performance will be significantly better than the average performance. Upper

bound performance for all probe categories is superior to all average perfor-

mance categories, except for FB probes.

The results in this chapter show that algorithm development is a dynamic

process. Our evaluation methodology make an important contribution to face

recognition and computer vision. This evaluation methodology will let researchers

know the strengths and weaknesses of their algorithms. Thus, researchers will

know where to concentrate their efforts to improve performance.



Chapter 6

Analysis of PCA-Based Face

Recognition Algorithms

6.1 Introduction

Over the last several years, numerous face recognition algorithms have been

developed based on principal component analysis (PCA). The main idea of PCA

is to reduce the dimensionality of a data set while retaining most of the variation

present in the data set [57]. PCA-based algorithms are the de facto benchmark

for face recognition algorithms. Their popularity is due to their ease of imple-

mentation and their achievement of reasonable performance levels [84, 88, 96].

PCA serves as the basis for new face recognition algorithms [5, 35, 59, 67, 79,

111], a benchmark for comparison with new algorithms [7, 109, 121], and a com-

putational model in psychophysics [47, 112, 115]. PCA-based algorithms have

been applied in a broad spectrum of studies, including face detection [68, 107],

face recognition [19, 24, 47, 111], and gender classification [25].

PCA is a statistical method for reducing the dimensionality of high dimen-

sional data, where the data are represented as a vector. There is an accepted

basic design for an algorithm built on PCA. However, the details of the basic

76
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algorithm require a number of design decisions. These design decisions include

detection of faces from a scene, preprocessing of facial images, feature extrac-

tion to represent a face, and the similarity measure for comparing faces. Each

of these design decisions has an impact on the overall performance of the algo-

rithm.

Some of these design decisions have been explicitly stated in the literature;

e.g., the similarity measure for comparing two faces. However, a large number

of decisions are not mentioned and are passed from researcher to researcher

by word of mouth. For example, the illumination normalization and number

of eigenfeatures that one chooses to include in a representation. Because the

design details are not explicitly stated, a reader cannot assess the merits of a

particular implementation and the associated claims. This can unnecessarily

cast a shadow on the performance claims of a new algorithm when a PCA-based

algorithm is used as a benchmark. Knowledge of the basic strengths and weak-

nesses of different implementations can provide insight and guidance in devel-

oping algorithms that build on PCA.

In this chapter, we present a generic modular PCA-based face recognition

system. Our PCA-based face recognition system consists of normalization, PCA

projection, and recognition modules. Each module consists of a series of basic

steps, where the purpose of each step is fixed. However, we systematically vary

the algorithm in each step. For example, the classifier step will always recog-

nize a face, but we experiment with different classifiers. The selection of which

algorithm is in each step is a design decision.

Based on the generic model for PCA-based algorithms, we evaluate different

implementations. Because we use a generic model, we can change the imple-

mentation in an orderly manner and assess the impact on performance of each

modification. We report identification and verification performance scores for

each category of probes. We report performance results using top rank score

for identification and equal error rate (EER) for verification. The algorithms are
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evaluated with the September 1996 FERET testing procedure [84].

In experiment I, we performed a detailed evaluation of variations in the

implementation. By testing on standard galleries and probe sets, the reader

can compare the performance of our PCA implementations with the algorithms

tested under the FERET program. In this experiment, we vary the illumination

normalization procedure, the number of eigenvectors in the representation, and

the similarity measure and we study the effects of compressing facial images on

algorithm performance. The effects of image compression on recognition is of

interest in applications where image storage space or image transmission time

are critical parameters.

In algorithm evaluation, two critical questions are often ignored. First, how

does performance vary with different galleries and probe sets. Second, when is

a difference in performance between two algorithms statistically significant. In

experiment two, we look at this question by randomly generating 100 galleries

of the same size. We then calculate the performance on each of the galleries

against fb and duplicate probes. Because we have 100 scores for each probe

category, we can examine the range of scores and the overlap in scores among

different implementations of the PCA algorithm.

6.2 PCA-Based Face Recognition System

6.2.1 Principal Component Analysis

Principal component analysis (PCA), which is also referred to as the Hotelling

transform or the discrete Karhunen-Loève transform, is based on statistical

properties of vector representations. It has several useful properties, such as

decorrelation of data and optimization of compression error [41]. Kirby and

Sirovich [59, 106] applied PCA to representing faces and Turk and Pentland [111]

extended PCA to recognizing faces. We provide a brief summary of the funda-
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mental theory of PCA below. (For further details on PCA, see Fukunaga [37] or

Jolliffe [57]).

Assume a population of random vectors of the form

x �

�
��������

x�

x�
...

xn

�
							

� (6.1)

The mean vector and the covariance matrix of the vector population x are

defined as

mx � Efxg � (6.2)

Cx � Ef�x�mx��x�mx�
T g � (6.3)

where Efargg is the expected value of the argument, and T indicates vector

transposition. Because x is n-dimensional, Cx is a matrix of order n�n. Ele-

ment cii of Cx is the variance of xi, the ith component of the x vectors in the

population, and element cij of Cx is the covariance between elements xi and xj

of these vectors. The matrix Cx is real and symmetric. If elements xi and xj are

uncorrelated, their covariance is zero, and therefore cij � cji � �. For N vector

samples from a random population, the mean vector and covariance matrix can

be approximated from the samples by

mx �
�

N

NX
k��

xk (6.4)

Cx �
�

N

NX
k��

�xkx
T
k �mxmx

T � � (6.5)
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Because Cx is real and symmetric, we can always find a set of n orthonor-

mal eigenvectors for this covariance matrix. A simple but foolproof algorithm to

find these orthonormal eigenvectors for all real symmetric matrices is the Jacobi

method [90]. The Jacobi algorithm consists of a sequence of orthogonal simi-

larity transformations. Each transformation is just a plane rotation designed to

annihilate one of the off-diagonal matrix elements. Successive transformations

undo previously set zeros, but the off-diagonal elements get smaller and smaller,

until the matrix is effectively diagonal (to the precision of the computer). We ob-

tain the eigenvectors by accumulating the product of transformations during the

process, while the main diagonal elements of the final diagonal matrix are the

eigenvalues.

Let ei and 	i� i � �� �� � � � � n� be the eigenvectors and the corresponding eigen-

values of Cx, sorted in a descending order so that 	j � 	j�� for j � �� �� � � � � n� �.

Let A be a matrix whose rows are formed from the eigenvectors of Cx, such that

A �

�
��������

e�

e�

...

en

�
							

� (6.6)

This A matrix can be used as a transformation matrix that maps the x’s into

vectors denoted by y’s, as shown below:

y � A�x�mx� � (6.7)

Equation 6.7 is called the Hotelling transform. The y vectors resulting from

this transformation have a zero mean vector; that is, my � �. The covariance

matrix of the y’s can be computed from A and Cx by
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Cy � ACxA
T � (6.8)

Furthermore, Cy is a diagonal matrix whose elements along the main diag-

onal are the eigenvalues of Cx; that is,

Cx �

�
������������

	� �

	�

�
�

� 	n

�
											

� (6.9)

Because the off-diagonal elements of Cy are zero, the elements of the y vec-

tors are uncorrelated. Since the elements along the main diagonal of a diagonal

matrix are its eigenvalues, Cx and Cy have the same eigenvalues and eigenvec-

tors. In fact, the transformation of the Cx into Cy is the essence of the Jacobi

algorithm described above.

Through the Hotelling transform, a new coordinate system is established.

The origin of this new coordinate system is at the centroid of the population, mx,

with new axes in the direction specified by the eigenvectors fe�� e�� � � � � eng. The

eigenvalue 	i becomes the variance of component yi along eigenvector ei. With

its capability to realign unknown data into a new coordinate system based on

the principal axes of the data, PCA is often used to achieve rotational invariance

in image processing tasks.

On the other hand, we may want to reconstruct vector x from vector y.

Because the rows of A are orthonormal vectors, A�� � AT . Therefore, any

vector x can be reconstructed from its corresponding y by the relation
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x � ATy �mx � (6.10)

Instead of using all the eigenvectors of Cx, we may pick only K eigenvec-

tors corresponding to the K largest eigenvalues and form a new transformation

matrix, AK , of order K�n. In this case, the resulting y vectors would be K-

dimensional, and the reconstruction given in Equation 6.10 would no longer be

exact. The reconstructed vector using AK is

�x � AT
Ky�mx � (6.11)

The mean square error between x and �x can be computed by the expression

� �

nX
j��

	j �
KX
j��

	j �

nX
j�K��

	j � (6.12)

Because the 	j ’s decrease monotonically, Equation 6.12 shows that we can

minimize the error by selecting the K eigenvectors associated with the K largest

eigenvalues. Thus the Hotelling transform is optimal in the sense that it mini-

mizes the MSE between the vectors x and their approximations �x.

In a PCA-based face recognition algorithm, the input is a training set t�� ���� tW

of N images such that the ensemble mean is zero �
P

i ti � ��. Each image is in-

terpreted as a point in n�m, where the image is n by m pixels. PCA finds a

representation in a �W ��� dimensional space that preserves variance. PCA gen-

erates a set of N � � eigenvectors �e�� ���� eN��� and eigenvalues �	�� ���� 	N���. (In

the face recognition literature, the eigenvectors can be referred to as eigenfaces.)

We normalize the eigenvectors so that they are orthonormal. The eigenvectors

are ordered so that 	i � 	i��. The 	i’s are equal to the variance of the pro-

jection of the training set onto the ith eigenvector. The low order eigenvectors
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Figure 6.1: Representation of face as a point in face space. A face is represented

by its projection onto a subset of M eigenvectors (the PCA generates a set of

N � � eigenvectors from N training images).

encode the larger variations in the training set (low order refers to the index of

the eigenvectors and eigenvalues). The face is represented by its projection onto

a subset of M eigenvectors, which we will call face space (see Figure 6.1). Thus

the normalized face is represented as a point in an M dimensional face space.

The dimensionality reduction is achieved when the face has been projected into

the eigenvectors.

6.2.2 System Modules

Our face recognition system consists of three modules and each module is

composed of a sequence of steps (see Figure 6.2). The first module normalizes
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Figure 6.2: Block diagram of PCA-based face recognition system.

the input image. The goal of normalization is to transform facial images into

a standard format that removes variations that can affect recognition perfor-

mance. This module consists of four steps. Figure 6.3 shows the input and

output of some of the steps in the normalization module.

The first step filters or compresses the original image. The image is filtered

to remove high frequency noise in the image. An image is compressed to save

storage space and reduce transmission time. The second step places the face in

a standard geometric position by rotating, scaling, and translating the center of

the eyes to a standard location. Even for the cooperating subjects, it is difficult to

sustain the same position of the head and the same distance from the acquisition

camera time after time. Therefore, integration of invariance to such changes

is a compulsory part of any face recognition system. However, the extent of

rotation and scaling depends on a particular application. The goal of this step

is to remove variations in size, orientation, and location of the face. The third

step masks out background pixels, hair, and clothes to remove unnecessary

variations that can interfere with the identification process. The fourth module

removes some of the variations in illumination between images. Changes in

illumination are critical factors in algorithm performance. Variations in lighting

conditions generally affect the image structure, making it more difficult to trace

the original features. Integration of the invariance to changes in illumination
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Figure 6.3: Input and output images of the normalization module.

improves the recognition performance.

The second module performs the PCA decomposition on the training set.

This produces the eigenvectors (eigenfaces) and eigenvalues. We did not vary this

module because we use the training set that was used for the FERET program for

the generation of eigenvectors [84]. (The mathematical representation of the PCA

algorithm for eigenvector generation is described in the appendix, section A.3.)

The third module identifies the face from a normalized image, and consists

of two steps. The first step projects the image onto the eigen representation.

The critical parameter in this step is the subset of eigenvectors that represent

the face. The second step recognizes faces using a nearest-neighbor classifier.

The critical design decision in this step is the similarity measure in the classifier.

We presented performance results using L� distance, L� distance, angle between

feature vectors, and Mahalanobis distance. Additionally, Mahalanobis distance

was combined with L�, L�, and angle between feature vectors mentioned above.

6.3 Experiment I

The purpose of experiment I is to examine the effects of changing the steps

in our generic PCA-based face recognition system. We do this by establishing

a baseline algorithm and then varying the implementation of selected steps one
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Figure 6.4: Examples of eigenvectors (eigenfaces) from PCA. The number below

each image represents the order of eigenvalues.

at a time. Ideally, we would test all possible combinations of the variations.

However, because of the number of combinations, this is not practical and we

vary the steps individually.

The baseline algorithm has the following configuration: The images are not

filtered or compressed. Geometric normalization consists of rotating, translat-

ing, and scaling the images so that the center of the eyes are on standard pixels.

This is followed by masking the hair and background from the images. In the

illumination normalization step, the nonmasked facial pixels were normalized
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Table 6.1: Identification performance results for illumination normalization

methods. Performance scores are the top rank match.

Probe category

Illumination normalization Duplicate I Duplicate II FB probe fc probe

Baseline 0.35 0.13 0.77 0.26

Original image 0.32 0.11 0.75 0.21

Histogram eq. only 0.34 0.12 0.77 0.24

 � ���, � � ��� only 0.33 0.14 0.76 0.25

Table 6.2: Verification performance results for illumination normalization meth-

ods. Performance scores are equal error rate (EER).

Probe category

Illumination normalization Duplicate I Duplicate II FB probe fc probe

Baseline 0.24 0.30 0.07 0.13

Original image 0.25 0.31 0.07 0.14

Histogram eq. only 0.25 0.30 0.07 0.13

 � ���, � � ��� only 0.25 0.29 0.07 0.14

by a histogram equalization algorithm. Then, the nonmasked facial pixels were

transformed so that the mean is equal to 0.0 and the standard deviation is equal

to 1.0. The geometric normalization and masking steps are not varied in the ex-

periments.

The training set for the PCA consists of 501 images (one image per person),

which produces 500 eigenvectors. The training set is not varied in this experi-

ments. In the recognition module, faces are represented by their projection onto

the first 200 eigenvectors and the classifier uses the L� norm. In Figure 6.4, we



Ch.6 Analysis of PCA-Based Face Recognition Algorithms 88

present some examples of the eigenvectors (eigenfaces).

6.3.1 Variations in the Normalization Module

A. Illumination Normalization

We experimented with three variations to the illumination normalization

step. For the baseline algorithm, the nonmasked facial pixels were transformed

so that the mean was equal to 0.0 and the standard deviation was equal to 1.0

followed by a histogram equalization algorithm (for details, see the appendix,

section A.2). In the first variation, the nonmasked pixels were not normalized

(original image). For the second variation, the nonmasked facial pixels were

normalized with a histogram equalization algorithm [40]. For the third varia-

tion, the nonmasked facial pixels were transformed so that the mean was equal

to 0.0 and variance equal to 1.0. The identification and verification performance

results from the illumination normalization methods are presented in Table 6.1

and 6.2.

B. Compressing and Filtering the Images

We examined the effects of JPEG and wavelet compression and low pass

filtering (LPF) on recognition. For this experiment, the original images were

compressed and then uncompressed before being fed into the geometric nor-

malization step of the normalization module. For both compression methods,

0.1

0.1

0.1

0.1 0.1

0.1 0.10.1

0.2

Figure 6.5: A 3 x 3 mask showing actual coefficients for low pass filtering.
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Table 6.3: Identification performance scores for low pass filter and JPEG and

wavelet compressed images (0.5 bits/pixel compression). Performance scores

are the top rank match.

Probe category

Normalization Duplicate I Duplicate II FB probe fc probe

Baseline 0.35 0.13 0.77 0.26

JPEG 0.35 0.13 0.78 0.25

Wavelet 0.36 0.15 0.79 0.25

LPF 0.36 0.15 0.79 0.24

Table 6.4: Verification performance score for low pass filter and JPEG and

wavelet compressed images (0.5 bits/pixel compression). Performance scores

are equal error rate (EER).

Probe category

Normalization Duplicate I Duplicate II FB probe fc probe

Baseline 0.24 0.30 0.07 0.13

JPEG 0.24 0.29 0.06 0.13

Wavelet 0.23 0.29 0.07 0.13

LPF 0.23 0.28 0.07 0.13

the images were compressed approximately 16:1 (0.5 bits per pixel). We experi-

mented with other compression ratios and found that performance was compa-

rable. The results are for eigenvectors generated from noncompressed images.

We found that performance in this case was slightly better than on eigenvectors

trained from compressed images. Because compression algorithms usually low

pass filter the images, we decided to examine the effects on performance of low

pass filtering the original image. The filter was a 3 x 3 spatial filter with a center
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Figure 6.6: Distribution of eigenvalues based on their order.

value of 0.2 and the remaining values equal to 0.1 (see Figure 6.5). Table 6.3

and 6.4 report identification and verification performances for the baseline algo-

rithm, JPEG and wavelet compression, and low pass filtering.

6.3.2 Variations in the Recognition Module

A. Number of Low Order Eigenvectors

The higher order eigenvectors that are associated with smaller eigenvalues

encode small variations and noise among the images in the training set. One

would expect from the exponentially decreasing eigenvalues that the higher or-

der eigenvectors would not contribute to recognition (see Figure 6.6). We exam-

ined this hypothesis by computing performance as a function of the number of

low order eigenvectors in the representation. Figure 6.7 shows (a) the top rank

score and (b) the equal error rate for FB and duplicate I probes as the function

of the number of low order eigenvectors included in the representation in face
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Figure 6.7: Performance on FB and duplicate I probes based on number of low

order eigenvectors used: (a) Identification and (b) verification performance score.

(For verification, the y-axis (EER) is reversed so that the top equals 0.)
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Table 6.5: Identification performance score with low order eigenvectors removed.

Performance scores are the top rank match.

Number of low order Probe category

eigenvectors removed Duplicate I Duplicate II FB probe fc probe

0 (Baseline) 0.35 0.13 0.77 0.26

1 0.35 0.15 0.75 0.38

2 0.34 0.14 0.74 0.36

3 0.31 0.14 0.72 0.37

Table 6.6: Verification performance scores with low order eigenvectors removed.

Performance scores are equal error rate (EER).

Number of low order Probe category

eigenvectors removed Duplicate I Duplicate II FB probe fc probe

0 (Baseline) 0.24 0.30 0.07 0.13

1 0.21 0.23 0.08 0.15

2 0.23 0.25 0.10 0.14

3 0.22 0.23 0.11 0.13

space. The representation consisted of e�� � � � � en� n � ��� ���� � � � � ���, where eis

are the eigenvectors generated by the PCA decomposition.

B. Removing Low Order Eigenvectors

The low order eigenvectors encode gross differences within the training set.

If the low order eigenvectors encode variations such as lighting changes, then

performance may improve by removing the low order eigenvectors from the rep-

resentation. We looked at this hypothesis by removing the first, second and
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Figure 6.8: Performance on fc probes with first one, two, and three low order

eigenvectors removed: (a) Identification and (b) verification performance score.
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third eigenvector from the representation; i.e., the representation consisted of

ei� � � � � e���� i � �� �� �� �. The identification and verification performance results

from these variations are given in Tables 6.5 and 6.6. Table 6.6 shows that

removing the first three eigenvectors resulted in an overall increase in verifica-

tion performance of duplicate I and duplicate II probes. This increase is further

highlighted in Figure 6.8 (b). Because there was a noticeable variation in perfor-

mance for the fc probes among the different categories of probes, we report the

cumulative match score and ROC for fc probes (see Figure 6.8).

C. Nearest-Neighbor Classifier

We experimented with seven similarity measures for the classifier. Their

identification and verification performance results are listed in Tables 6.7 and 6.8.

Details of the similarity measures are given in the appendix, section A.4. The

performance scores for the fc probes show the most variation among the dif-

ferent categories of probes. In Figure 6.9, we report detailed identification and

verification performance results for fc probes.

6.3.3 Discussions

In experiment I, we conducted a series of experiments that systematically

varied the steps in each module based on our PCA-based face recognition sys-

tem. The goal was to help to understand the effects of these variations on per-

formance scores.

In the normalization module, we varied the illumination normalization and

compression steps. The results show that performing an illumination normal-

ization step improves identification performance (see Table 6.1), but which im-

plementation is selected is not critical (see Table 6.2). The results also show that

compressing or filtering the images does not significantly affect performance (see

Tables 6.3 and 6.4).
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Table 6.7: Identification performance scores based on different nearest-neighbor

classifier. Performance scores are the top rank match.

Probe category

Nearest-neighbor classifier Duplicate I Duplicate II FB probe fc probe

Baseline (L�) 0.35 0.13 0.77 0.26

Euclidean (L�) 0.33 0.14 0.72 0.04

Angle 0.34 0.12 0.70 0.07

Mahalanobis 0.42 0.17 0.74 0.23

L� + Mahalanobis 0.31 0.13 0.73 0.39

L� + Mahalanobis 0.35 0.13 0.77 0.31

Angle + Mahalanobis 0.45 0.21 0.77 0.24

Table 6.8: Verification performance scores based on different nearest-neighbor

classifier. Performance scores are equal error rate (EER).

Probe category

Nearest-neighbor classifier Duplicate I Duplicate II FB probe fc probe

Baseline (L�) 0.24 0.30 0.07 0.13

Euclidean (L�) 0.21 0.26 0.05 0.22

Angle 0.19 0.22 0.05 0.22

Mahalanobis 0.11 0.12 0.04 0.11

L� + Mahalanobis 0.34 0.39 0.12 0.13

L� + Mahalanobis 0.25 0.30 0.07 0.12

Angle + Mahalanobis 0.11 0.12 0.03 0.10
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Figure 6.9: Effects of nearest-neighbor classifier on performances for fc probes:

(a) Identification and (b) verification performance score.
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In the recognition module, we experimented with three classes of variations.

First, we varied the number of low order eigenvectors in the representation from

50 to 500 by steps of 50. In Figure 6.6, the eigenvalues decrease exponentially.

Figure 6.7 shows that performance increases until approximately 150 to 200

eigenvectors are in the representation, and then performance decreases slightly.

Representing faces by the first 30 to 40% of the eigenvectors is consistent with

results on other facial image sets that the authors have seen.

Second, low order eigenvectors were removed. Table 6.5 shows that remov-

ing the first eigenvector resulted in an overall increase in identification perfor-

mance. For the identification performance, the largest increase was observed

with the fc probes. This increase is further highlighted in Figure 6.8 (a). The low

order eigenvectors encode the greatest variations among the training set. The

most significant difference between the fc probes and the gallery images was a

change in lighting. If the low order eigenvectors encode lighting differences, then

this would explain the substantial increase in performance by removing the first

eigenvector.

Third, the similarity measure in the nearest-neighbor classifier was changed.

This variation showed the largest range of identification and verification perfor-

mance. In Table 6.7, the identification performance of duplicate I probes perfor-

mance ranged from 0.31 to 0.45, and for fc probes ranged from 0.07 to 0.39. In

Table 6.8, the verification performance of duplicate I probes ranged from 0.11

to 0.34, and for fc probes ranged from 0.10 to 0.22. For duplicate I, duplicate

II, and FB probes, the angle+Mahalanobis distance performed the best. For the

fc probes, the L�+Mahalanobis distance performed the best for identification

and the angle+Mahalanobis distance performed the best for verification (see Fig-

ure 6.9). Because of the range of performance, it is clear that selecting the

similarity measure for the classifier is the critical decision in designing a PCA-

based face recognition system. However, the design decision is dependent on the

type of images in the galleries and the probe sets that the system will process.
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6.4 Experiment II

6.4.1 Variations in Galleries and Probe Set

The comparison among algorithms in experiment I is based on the algorithm

performance on four probe sets. The performance among the different probe

sets cannot be directly compared since the number of probes in each category

is different. The natural question is, “When is the difference in performance

between two classifiers significant?”

To address this question, we randomly generated 100 galleries of 200 indi-

viduals, with one frontal view image per person. The galleries were generated

without replacement from the FB gallery of 1,196 individuals in experiment I.

Then we scored each of the galleries against the FB and duplicate I probes for

each of the seven classifiers in experiment I. (There were not enough fc and

duplicate II probes to compute performances for these categories.) For each

randomly generated gallery, the corresponding FB probe set consisted of the

second frontal view image for all images in that gallery; the duplicate I probe set

consisted of all duplicate images in the database for each image in the gallery.

We measured performance by the top rank score (the fraction of probes that

were correctly identified).

For an initial look at the range in performance, we examine the baseline

algorithm (L� similarity measure). There are similar variations for the six re-

maining distances. For each classifier and probe category, we had 100 different

scores. In Figures 6.10 and 6.11, we present the histogram of top rank scores

and equal error rates (%) for the baseline algorithm for both the FB and the du-

plicate I probe sets. For the top rank score, performance ranges from 0.80 to

0.92 for the FB probe and from 0.29 to 0.59 for the duplicate I probe. For equal

error rate, performance ranges from 4.6 to 8.2 for the FB probe and from 18.8 to

33.2 for the duplicate I probe. This clearly shows a large range in performance

of the 100 galleries.
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Figure 6.10: Histogram of top rank scores of the baseline algorithm (L� similarity

measure) (a) FB and (b) duplicate I probes.
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Figure 6.11: Histogram of equal error rates (%) of the baseline algorithm (L�

similarity measure) (a) FB and (b) duplicate I probes.
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In Figure 6.12 and 6.13, we reported a truncated range of top rank scores

and equal error rates (%) for the seven different nearest-neighbor classifiers for

both the FB and duplicate I probe sets. For each classifier, the score is marked

with the median by �, the 10th percentile by �, and 90th percentile by �. We

plotted these values because they are robust statistics. We selected the 10th

and 90th percentile because they mark a robust range of scores and outliers are

ignored. From these results, we get a robust estimate of the overall performance

of each classifier.

6.4.2 Discussions

In experiment II, the main goal was to get a rough estimate of when the

difference in performance is significant. From Figures 6.12 and 6.13, the range

in identification and verification scores is approximately ����� about the median.

This suggests that a reasonable threshold for measuring a significant difference

in performance for the classifiers is 	 ����.

The results for duplicate I probes in experiment II are consistent with the

results in experiment I. In Tables 6.7 and 6.8, the top classifiers were the Ma-

halanobis and angle+Mahalanobis. These two classifiers produce better perfor-

mance than the other methods as shown in Figures 6.12 and 6.13. In both

experiments, the L�+Mahalanobis received the lowest identification and verifi-

cation performance scores. This suggest that for duplicate I scores, the an-

gle+Mahalanobis or Mahalanobis distance should be used. Based on the results

of this experiment, the performance of smaller galleries can predict relative per-

formance on larger galleries.

For the FB probes, there is not as sharp a division among classifiers. One

possible explanation is that in experiment I, the top match scores for the FB

probes did not vary as much as the duplicate I scores. There is consistency

among the best scores (L�, L�+Mahalanobis, and angle+Mahalanobis). The re-



Ch.6 Analysis of PCA-Based Face Recognition Algorithms 102

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7

T
o
p
 
r
a
n
k
 
s
c
o
r
e

Algorithm

10th percentile
median

90th percentile

(a)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7

T
o
p
 
r
a
n
k
 
s
c
o
r
e

Algorithm

10th percentile
median

90th percentile

(b)

Figure 6.12: The range of top rank scores using seven different nearest-neighbor

classifiers. The nearest-neighbor classifiers presented are (1) L�, (2) L�, (3)

Angle, (4) Mahalanobis, (5) L�+Mahalanobis, (6) L�+Mahalanobis, and (7) An-

gle+Mahalanobis. (a) FB and (b) duplicate I probes.
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Figure 6.13: The range of equal error rates (%) using seven different nearest-

neighbor classifiers. The nearest-neighbor classifiers presented are (1) L�, (2)

L�, (3) Angle, (4) Mahalanobis, (5) L�+Mahalanobis, (6) L�+Mahalanobis, and (7)

Angle+Mahalanobis. (a) FB and (b) duplicate I probes.



Ch.6 Analysis of PCA-Based Face Recognition Algorithms 104

maining classifiers’ performances can be grouped together. The performance

scores of these classifiers are within each other’s error margins. We defined er-

ror margins as a robust range of performance scores. This suggests that either

the L�, L�+Mahalanobis, or angle+Mahalanobis distance should be used.

6.5 Conclusions

The main goal of our experiment was to point out the critical design deci-

sions for PCA-based face recognition system. We introduced a generic modular

PCA-based face recognition systems and systematically varied the components

to measure the impact of these variations. From the results throughout the

series of experiments, we present two models for a PCA-based face recognition

system. In the proposed models, our design decision includes processing steps

with better performance in each module.

The choice of steps used in the proposed I system include (1) illumination

normalization ( � ��� and � � ���), (2) low-pass filtering (LPF), (3) removal of

the first low order eigenvector, and (4) using the angle+Mahalanobis distance.

The choice of steps used in the proposed II system includes (1) illumination nor-

malization ( � ��� and � � ���), (2) wavelet compression [0.5 bpp], (3) removal

of the first low order eigenvector, and (4) using the L�+Mahalanobis distance.

The proposed I system addresses the effects of LPF with angle+Mahalanobis

distance, while the proposed II system represents wavelet compression with

L�+Mahalanobis distance.

In Table 6.9, the identification performance score for the duplicate I probe

is increased from 0.35 to 0.49 for proposed I method, and the duplicate II probe

from 0.13 to 0.26 for both proposed I and II method (top rank score). The iden-

tification performance score for FB probe is slightly increased from 0.77 to 0.78

for both proposed I and II methods, and fc probe from 0.26 to 0.33 for proposed

II method (top rank score). In Table 6.10, the verification performance for the
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Table 6.9: Comparison of identification performance scores for baseline, pro-

posed I ( � ��� and � � ���, LPF, first low order eigenvector removed, an-

gle+Mahalanobis distance), and proposed II ( � ��� and � � ���, wavelet com-

pression [0.5bpp], first low order eigenvector removed, L�+Mahalanobis dis-

tance) algorithm. Performance scores are the top rank match.

Probe category

Algorithm Duplicate I Duplicate II FB probe fc probe

Baseline 0.35 0.13 0.77 0.26

Proposed I 0.49 0.26 0.78 0.26

Proposed II 0.40 0.26 0.78 0.33

Table 6.10: Comparison of verification performance scores for baseline, pro-

posed I ( � ��� and � � ���, LPF, first low order eigenvector removed, an-

gle+Mahalanobis distance), and proposed II ( � ��� and � � ���, wavelet com-

pression [0.5bpp], first low order eigenvector removed, L�+Mahalanobis dis-

tance) algorithm. Performance scores are equal error rate (EER).

Probe category

Algorithm Duplicate I Duplicate II FB probe fc probe

Baseline 0.24 0.30 0.07 0.13

Proposed I 0.11 0.21 0.07 0.15

Proposed II 0.20 0.22 0.07 0.10

duplicate I probe is improved from 0.24 to 0.11 for proposed I method, and the

duplicate II probe improved from 0.30 to 0.21 for proposed I method (equal er-

ror rate). The verification performance score for the FB probe shows the same

results for all three methods, and the fc probe improved from 0.13 to 0.10 for

proposed II method (equal error rate).
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Based on these results, the proposed algorithms show reasonably better

performance for the duplicate I, duplicate II (for proposed I method) and fc

probes (for proposed II method) than the baseline algorithm in both identification

and verification scenarios. For the FB probes, both identification and verifica-

tion results show almost identical performance scores for each method used.

The results of identification are reported for four different categories of probes in

Figures 6.14 and 6.15. Also, the verification performances are reported for four

different categories of probes in Figures 6.16 and 6.17.

In our evaluation process, we introduced a modular design for PCA-based

face recognition systems. This allowed us to systematically vary the steps and

measure the impact of these variations on performance. Like PCA, the majority

of the face recognition algorithms in the literature are view-based [67, 81, 120]

and have the same basic architecture as our PCA-based system. By following

the evaluation procedure presented in this chapter, algorithm designers can

determine the optimal configuration of their face recognition system. We have

come to four major conclusions from the series of experiments with PCA-based

face recognition system.

First, JPEG and wavelet compression algorithms do not degrade perfor-

mance. This is important because it indicates that compressing images to save

transmission time and storage costs will not reduce algorithm performance.

Second, selection of the nearest-neighbor classifier is the critical design de-

cision in designing a PCA-based algorithm. The proper selection of a nearest-

neighbor classifier is essential to improve performance scores. Furthermore, our

experiments shows that similarity measures that achieve the best performance

are not generally considered in the literature.

Third, the performance scores vary among the probe categories. This shows

when one designs an algorithm, one needs to consider the type of images that

the algorithm will process. We found that the FB and duplicate I probes are
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least sensitive to system design decisions, while fc and duplicate II probes are

the most sensitive.

Fourth, the performance within a category of probes can vary greatly. This

leads to the recommendation that when comparing algorithms, the performance

scores from a set of galleries and probe sets need to be examined. We gener-

ated 100 galleries and calculated performance against fb and duplicate probes.

Then, we examined the range of scores and the overlap in scores among different

implementations.
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Figure 6.14: Identification performance comparison of baseline and proposed I,

and proposed II algorithms. (a) duplicate I and (b) duplicate II probes.



6.5 Conclusions 109

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

P
r
o
b
a
b
i
l
i
t
y
 
o
f
 
i
d
e
n
t
i
f
i
c
a
t
i
o
n

Rank

Proposed I
Proposed II

Baseline

(a)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

P
r
o
b
a
b
i
l
i
t
y
 
o
f
 
i
d
e
n
t
i
f
i
c
a
t
i
o
n

Rank

Proposed II
Proposed I

Baseline

(b)

Figure 6.15: Identification performance comparison of baseline and proposed I,

and proposed II algorithms. (a) FB and (b) fc probes.
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Figure 6.16: Verification performance comparison of baseline and proposed I,

and proposed II algorithms. (a) duplicate I and (b) duplicate II probes.
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Figure 6.17: Verification performance comparison of baseline and proposed I,

and proposed II algorithms. (a) FB and (b) fc probes.



Chapter 7

Conclusions

In this dissertation, we have presented a performance evaluation methodology

that is particularly suitable for the recognition of facial images. The automated

recognition of human faces presents a significant challenge to the research com-

munity. Typically, most faces have a similar structure, since they only differ in

minor details, and the appearance of a face can vary depending on the cir-

cumstances. The problem is further complicated by the often uncontrolled en-

vironment in which the facial image is acquired. In addition, each particular

application that uses face recognition has limitations such as recognition sce-

narios, storage requirements, and transmission time. These limitations make

face recognition one of the most difficult problems in computer vision and pat-

tern recognition.

We developed a performance evaluation for face recognition algorithms based

on the identification and verification model and presented a design methodology

based on a generic modular PCA-based face recognition system. The main con-

tributions of our research to the face recognition community are (1) the estab-

lishment of a standard methodology for evaluating face recognition algorithms,

(2) an assessment of the state of the art in face recognition, and (3) the presen-

tation of a design methodology for individual face recognition algorithms. The
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design of our performance evaluation methodology using the identification and

verification model and our generic modular PCA-based face recognition system

have achieved the research objectives as described below.

First, the improvement in identification and verification performance shows

directly that our performance evaluation methodology has made a significant

contribution to face recognition technology. The results show that factors that

affect the identification and verification performance include test scenario, date

tested, and probe category. These evaluation efforts let researchers know the

strengths and weaknesses of their algorithms and where improvements could

be made. This is directly supported by the new FERET test, which presents

improvements in identification and verification performance between the algo-

rithms tested, the number of papers that use the experimental results based

on our performance evaluation method, and the number of groups that partici-

pated.

Second, we have assessed the state of the art in face recognition by pre-

senting identification and verification performance based on our new evaluation

protocol. The new FERET test shows that definite progress is being made in face

recognition and that the upper bound in performance has not been reached. We

addressed various evaluation issues by computing algorithm performance for

different probe categories and multiple galleries and probe sets. We observed

variation in performance due to changing the gallery and probe set within a

probe category and by changing probe categories. To estimate the degree of dif-

ficulty for each category, we compared the average and current upper bounds

of performance for each category. For average performance, our results rank

FB probes as easiest, duplicate II probes as most difficult, and fc and duplicate

I probes as tied in the middle. For current upper bounds, duplicate I probes

are more difficult than fc probes. Our results show that we can expect that

the best performance will be significantly better than the average performance.

Upper bound performance for all probe categories is superior to all average per-
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formance categories except for FB probes.

Third, we have presented a design methodology of a generic modular PCA-

based face recognition system and identified directions for future face recogni-

tion research. We have systematically varied the steps in our system and mea-

sured the impact of these variations on performance. By following our evalua-

tion procedure, algorithm designers can determine the optimal configuration of

their face recognition system. We have established a baseline algorithm and pre-

sented performance results by varying the implementation among the selected

steps one at a time. Also, we have examined the effects of changing galleries to

point out the variations in performance results.

Future research on our performance evaluation methodology includes (1)

the establishment of baselines for human computer interaction; (2) the testing

and evaluation of face recognition problems for aging, gender, and race; (3) the

development of evaluation methods for real-time multimedia applications; and

(4) the creation of generalized evaluation methods applicable for common com-

puter vision and pattern recognition problems. Future research will require test

designs and experiments that are more robust in design and content and that

have databases with more variations. Examples of these variations are (1) im-

ages of individuals taken over an extended period of time; (2) images with a

variety of features (e.g., glasses, facial hair, occlusions, rotations, and changes

in illumination, etc.); (3) the effects of changing galleries and probe sets; and

(4) multimedia databases, including audiovisual information within real-world

settings.



Appendix A

Appendix

A.1 Definition of Terms

� Duplicate: an image of a person whose corresponding gallery image was

taken on a different date.

� Duplicate I: all duplicate images for the gallery images.

� Duplicate II: duplicate images where there was at least one year between

the acquisition of the probe image and corresponding gallery image.

� FERET: The Face Recognition Technology Program.

� Gallery: the collection of images of known individuals.

� Probe: an image of an unknown individual.

� Probe set: the collection of probes.

� Query set: the unknown facial images to be identified by the algorithm.

� Target set: the set of known facial images given to the algorithm.
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A.2 Histogram Equalization

In histogram equalization, the goal is to obtain a uniform histogram for the

output image [41, 89]. If the original image has pixel values Imin and Imax, while

the available range is between 0 and �N � �, we transform I�x� y� by the function

I�x� y� � ��N � ���I�x� y� � Imin���Imax � Imin��

where N is the number of bits with which the image has been digitized and

I�x� y� is the digitized gray level of the pixel with coordinates �x� y�.

A.3 Generation of Eigenface

Let us consider a set of facial images for training fX�� X�� ����XMg. The mean

face is defined by � � �
M

PM
n��Xn. Each face differs from the mean face by

�i � Xi � �. This set of vectors is used for the calculation of eigenfaces that

finds a set of M orthonormal vectors, un, that best describes the distribution of

the data. The kth vector, uk, is chosen such that

	k �
�

M

MX
n��

�uTk�n�
�

is maximum, subject to

uTl uk � �lk �

���
��

�� if l � k

�� otherwise

The vectors uk and scalars 	k are the eigenvectors and eigenvalues, respec-

tively, of the covariance matrix
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C �
�

M

MX
n��

�n�
T
n � AAT �

where the matrix A � ������� �����M .

Let us consider a set of N facial images fx�� x�� ���� xNg taking values in an

n-dimensional image space, and assume that each image belongs to one of c

classes. Let us also consider a linear transformation mapping the original n-

dimensional image space into an m-dimensional feature space, where m � n.

The new feature vectors yk � Rm are defined by the following linear transforma-

tion:

yk �W txk� k � �� �� ���� N�

where W � Rn�m is a matrix with orthonormal columns. If the total scatter

matrix ST is defined as

ST �

NX
k��

�xk � ��xk � �T �

where n is the number of sample images, and  � Rn is the mean image of

all samples, then after applying the linear transformation W T , the scatter of the

transformed feature vectors fy�� y�� ���� yNg is W TSTW . In PCA, the projection Wopt

is chosen to maximize the determinant of the total scatter matrix of the projected

samples, i.e.,

Wopt � argmax
W

jW TSTW j � �w�w����wm�

where fwiji � �� �� ����mg is the set of n-dimensional eigenvectors of ST corre-

sponding to the m largest eigenvalues. Since these eigenvectors have the same
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dimension as the original images, they are referred to as eigenfaces [57]. If clas-

sification is performed using a nearest-neighbor classifier in the reduced feature

space and m is chosen to be the number of images N in the training set, then

the eigenface method is equivalent to the correlation method.

A.4 Nearest-Neighbor Classifier

We mathematically describe the similarity measure used in the nearest-

neighbor classifiers. The variables x�y, and z are k-dimensional vectors and

xi�yi� and zi are the ith components of the vectors.

A.4.1 L� Distance.

d�x�y� � jx� yj �
kX
i��

jxi � yij

A.4.2 L� Distance.

d�x�y� � kx� yk� �
kX
i��

�xi � yi�
�

A.4.3 Angle Between Feature Vectors.

d�x�y� � � x � y
kxkkyk � �

Pk
i�� xiyiqPk

i���xi�
�
Pk

i���yi�
�

A.4.4 Mahalanobis Distance.

d�x�y� z� � �
kX
i��

xiyizi�
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and

i �

r
	i

	i � ��
� �p

	i
� � � �����

where 	i = the eigenvalue of the ith eigenvector.

A.4.5 L� + Mahalanobis Distance.

d�x�y� z� �
kX
i��

jxi � yijzi

A.4.6 L� + Mahalanobis Distance.

d�x�y� z� �

kX
i��

�xi � yi�
�
zi

A.4.7 Angle + Mahalanobis Distance.

d�x�y� z� � �
Pk

i�� xiyiziqPk
i���xi�

�
Pk

i���yi�
�
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